High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiments
2.2. Multispectral Imaging
2.3. Fractional Cover Modeling
2.4. Crop Water Use Estimation
2.5. Statistical Analysis
3. Results
3.1. Crop Water Use Evaluation
3.2. Basal Crop Coefficients
3.3. Statistical Results
3.4. Relevance to Breeding
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dai, A. Drought under global warming: A review. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 45–65. [Google Scholar] [CrossRef]
- Wehner, M.; Easterling, D.R.; Lawrimore, J.H.; Heim, R.R.; Vose, R.S.; Santer, B.D. Projections of future drought in the continental United States and Mexico. J. Hydrometeorol. 2011, 12, 1359–1377. [Google Scholar] [CrossRef]
- Ali, M.H.; Talukder, M.S.U. Increasing water productivity in crop production—A synthesis. Agric. Water Manag. 2008, 95, 1201–1213. [Google Scholar] [CrossRef]
- Passioura, J.B. Phenotyping for drought tolerance in grain crops: When is it useful to breeders? Funct. Plant Biol. 2012, 39, 851–859. [Google Scholar] [CrossRef]
- Evans, R.G.; King, B.A. Site-specific sprinkler irrigation in a water-limited future. Trans. ASABE 2012, 55, 493–504. [Google Scholar] [CrossRef]
- Sadler, E.J.; Evans, R.G.; Stone, K.C.; Camp, C.R. Opportunities for conservation with precision irrigation. J. Soil Water Conserv. 2005, 60, 371–379. [Google Scholar]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant adaptation to climate change–opportunities and priorities in breeding. Crop Pasture Sci. 2012, 63, 251–268. [Google Scholar] [CrossRef]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs challenge to assess water stress for sustainable agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Gowda, P.H.; Chavez, J.L.; Colaizzi, P.D.; Evett, S.R.; Howell, T.A.; Tolk, J.A. ET mapping for agricultural water management: Present status and challenges. Irrig. Sci. 2008, 26, 223–237. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Shearer, S. An overview of current and potential applications of thermal remote sensing in precision agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review. J. Exp. Biol. 2012, 63, 4671–4712. [Google Scholar] [CrossRef] [PubMed]
- Wesseling, J.G.; Feddes, R.A. Assessing crop water productivity from field to regional scale. Agric. Water Manag. 2006, 86, 30–39. [Google Scholar] [CrossRef]
- Yebra, M.; Van Dijk, A.; Leuning, R.; Huete, A.; Guerschman, J. Evaluation of optical remote sensing to estimate actual evapotranspiration and canopy conductance. Remote Sens. Environ. 2013, 129, 250–261. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; O’Shaughnessy, S.A.; Evett, S.R.; Mounce, R.B. Crop evapotranspiration calculation using infrared thermometers aboard center pivots. Agric. Water Manag. 2017, 187, 173–189. [Google Scholar] [CrossRef] [Green Version]
- Hunsaker, D.J.; French, A.N.; Waller, P.M.; Bautista, E.; Thorp, K.R.; Bronson, K.F.; Andrade Sanchez, P. Comparison of traditional and ET-based irrigation scheduling of surface-irrigated cotton in the arid southwestern USA. Agric. Water Manag. 2015, 159, 209–224. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Zaman-Allah, M.; Vergara, O.; Araus, J.L.; Tarekegne, A.; Magorokosho, C.; Zarco-Tejada, P.J.; Hornero, A.; Albà, A.H.; Das, B.; Craufurd, P.; et al. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Plant Methods 2015, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Sankaran, S.; Khot, L.R.; Carter, A.H. Field-based crop phenotyping: Multispectral aerial imaging for evaluation of winter wheat emergence and spring stand. Comput. Electron. Agric. 2015, 118, 372–379. [Google Scholar] [CrossRef]
- Condorelli, G.E.; Maccaferri, M.; Newcomb, M.; Andrade-Sanchez, P.; White, J.W.; French, A.N.; Sciara, G.; Ward, R.; Tuberosa, R. Comparative aerial and ground based high throughput phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat. Front. Plant Sci. 2018, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Schmidhalter, U. Spectral assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown under full and limited water irrigation. Agric. Water Manag. 2017, 182, 1–12. [Google Scholar] [CrossRef]
- Rischbeck, P.; Elsayed, S.; Mistele, B.; Barmeier, G.; Heil, K.; Schmidhalter, U. Data fusion of spectral, thermal and canopy height parameters for improved yield prediction of drought stressed spring barley. Eur. J. Agron. 2016, 78, 44–59. [Google Scholar] [CrossRef]
- Thorp, K.R.; Gore, M.A.; Andrade Sanchez, P.; Carmo Silva, A.E.; Welch, S.M.; White, J.W.; French, A.N. Proximal hyperspectral sensing and data analysis approaches for field-based plant phenomics. Comput. Electron. Agric. 2015, 118, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Winterhalter, L.; Mistele, B.; Jampatong, S.; Schmidhalter, U. High throughput phenotyping of canopy water mass and canopy temperature in well-watered and drought stressed tropical maize hybrids in the vegetative stage. Eur. J. Agron. 2011, 35, 22–32. [Google Scholar] [CrossRef]
- White, J.W.; Andrade Sanchez, P.; Gore, M.A.; Bronson, K.F.; Coffelt, T.A.; Conley, M.M.; Feldmann, K.A.; French, A.N.; Heun, J.T.; Hunsaker, D.J.; et al. Field-based phenomics for plant genetics research. Field Crops Res. 2012, 133, 101–112. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Partical-size analysis. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods; ASA-SSSA: Madison, WI, USA, 1986; Chapter 15; pp. 383–411. [Google Scholar]
- Zhang, Y.; Schaap, M.G. Weighted recalibration of the Rosetta pedotransfer model with improved estimates of hydraulic parameter distributions and summary statistics (Rosetta3). J. Hydrol. 2017, 547, 39–53. [Google Scholar] [CrossRef]
- Thorp, K.R.; Hunsaker, D.J.; Bronson, K.F.; Andrade-Sanchez, P.; Barnes, E.M. Cotton irrigation scheduling using a crop growth model and FAO-56 methods: Field and simulation studies. Trans. ASABE 2017, 60, 2023–2039. [Google Scholar] [CrossRef]
- Hunsaker, D.J.; Barnes, E.M.; Clarke, T.R.; Fitzgerald, G.J.; Pinter, P.J. Cotton irrigation scheduling using remotely sensed and FAO-56 basal crop coefficients. Trans. ASAE 2005, 48, 1395–1407. [Google Scholar] [CrossRef]
- Kalman, R.E. A new approach to linear filtering and prediction problems. J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Itenfisu, D.; Brown, P.; Jensen, M.E.; Mecham, B.; Howell, T.A.; Snyder, R.; Eching, S.; et al. The ASCE Standardized Reference Evapotranspiration Equation; ASCE-EWRI: Reston, VA, USA, 2005. [Google Scholar]
- Kullberg, E.G.; DeJonge, K.C.; Chávez, J.L. Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients. Agric. Water Manag. 2017, 179, 64–73. [Google Scholar] [CrossRef]
Abbreviation | Full Name | Type | Source |
---|---|---|---|
Ark071209 | Ark071209 | Breeding line | University of Arkansas, Keiser, AR, USA |
Arkot9704 | Arkot 9704 | Released germplasm | University of Arkansas, Keiser, AR, USA |
DP1044B2RF | Deltapine 1044 B2RF | Commercial cultivar | Monsanto Company, St. Louis, MO, USA |
DP12R244R2 | Deltapine 1441 RF | Commercial cultivar | Monsanto Company, St. Louis, MO, USA |
DP1549B2XF | Deltapine 1549 B2XF | Commercial cultivar | Monsanto Company, St. Louis, MO, USA |
FM958 | FiberMax 958 | Commercial cultivar | Bayer Crop Science, Raleigh, NC, USA |
PD07040 | Pee Dee 07040 | Breeding line | USDA-ARS, Florence, SC, USA |
Siokra L23 | Siokra L23 | Improved variety | CSIRO, Canberra, ACT, Australia |
Date | DOY | DAP1 | DAP2 | Camera |
---|---|---|---|---|
28 May 2016 | 149 | 32 | 10 | RedEdge |
5 June 2016 | 157 | 40 | 18 | RedEdge |
28 June 2016 | 180 | 63 | 41 | RedEdge |
5 July 2016 | 187 | 70 | 48 | RedEdge |
12 July 2016 | 194 | 77 | 55 | RedEdge |
21 July 2016 | 203 | 86 | 64 | RedEdge |
6 August 2016 | 219 | 102 | 80 | RedEdge |
31 August 2016 | 244 | 127 | 105 | RedEdge |
8 September 2016 | 252 | 135 | 113 | RedEdge |
1 October 2016 | 275 | 158 | 136 | RedEdge |
3 May 2017 | 123 | 14 | −7 | RedEdge |
24 May 2017 | 144 | 35 | 14 | Sequoia |
31 May 2017 | 151 | 42 | 21 | Sequoia |
6 June 2017 | 157 | 48 | 27 | Sequoia |
13 June 2017 | 164 | 55 | 34 | Sequoia |
20 June 2017 | 171 | 62 | 41 | Sequoia |
27 June 2017 | 178 | 69 | 48 | Sequoia |
11 July 2017 | 192 | 83 | 62 | Sequoia |
1 August 2017 | 213 | 104 | 83 | RedEdge |
15 August 2017 | 227 | 118 | 97 | RedEdge |
22 August 2017 | 234 | 125 | 104 | RedEdge |
Trait | Unit | n | Mean | Std Dev | Minimum | Maximum |
---|---|---|---|---|---|---|
FY | kg ha | 383 | 1831.00 | 445.16 | 703.15 | 2929.00 |
ET | mm | 384 | 954.73 | 145.07 | 661.40 | 1223.00 |
CWUE | kg m | 383 | 0.19 | 0.04 | 0.10 | 0.31 |
T | mm | 384 | 757.50 | 158.85 | 389.20 | 1069.00 |
TWUE | kg m | 383 | 0.25 | 0.05 | 0.13 | 0.40 |
MIC | unitless | 384 | 5.17 | 0.30 | 4.30 | 6.00 |
UHM | mm | 384 | 28.96 | 1.02 | 26.16 | 31.50 |
UI | mm mm | 384 | 82.79 | 1.06 | 79.30 | 85.80 |
STR | HVI g tex | 384 | 31.85 | 1.86 | 27.20 | 39.70 |
ELO | % | 384 | 5.87 | 0.82 | 4.00 | 7.60 |
SFC | % | 384 | 8.23 | 0.60 | 6.70 | 10.70 |
Trait | Year | Planting Date | Irrigation Rate | Cultivar | ||||
---|---|---|---|---|---|---|---|---|
F | p | F | p | F | p | F | p | |
FY | 21.87 | 0.0001 | 273.97 | 0.0001 | 42.98 | 0.0001 | 5.31 | 0.0001 |
ET | 96.23 | 0.0001 | 5589.25 | 0.0001 | 3073.79 | 0.0001 | 2.25 | 0.0305 |
CWUE | 35.22 | 0.0001 | 38.79 | 0.0001 | 13.66 | 0.0001 | 5.22 | 0.0001 |
T | 127.66 | 0.0001 | 1272.99 | 0.0001 | 941.46 | 0.0001 | 2.91 | 0.0061 |
TWUE | 39.42 | 0.0001 | 23.06 | 0.0001 | 41.59 | 0.0001 | 5.77 | 0.0001 |
MIC | 2.71 | 0.3474 | 11.35 | 0.0009 | 4.06 | 0.0007 | 15.70 | 0.0001 |
UHM | 10.83 | 0.0525 | 18.56 | 0.0001 | 28.66 | 0.0001 | 6.75 | 0.0001 |
UI | 54.69 | 0.0001 | 6.84 | 0.0112 | 11.31 | 0.0001 | 2.81 | 0.0079 |
STR | 0.01 | 0.9328 | 0.17 | 0.6776 | 5.19 | 0.0001 | 14.24 | 0.0001 |
ELO | 0.53 | 0.5479 | 8.75 | 0.0034 | 1.86 | 0.0884 | 17.84 | 0.0001 |
SFC | 0.24 | 0.6363 | 3.63 | 0.0580 | 12.09 | 0.0001 | 3.82 | 0.0006 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorp, K.R.; Thompson, A.L.; Harders, S.J.; French, A.N.; Ward, R.W. High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model. Remote Sens. 2018, 10, 1682. https://doi.org/10.3390/rs10111682
Thorp KR, Thompson AL, Harders SJ, French AN, Ward RW. High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model. Remote Sensing. 2018; 10(11):1682. https://doi.org/10.3390/rs10111682
Chicago/Turabian StyleThorp, Kelly R., Alison L. Thompson, Sara J. Harders, Andrew N. French, and Richard W. Ward. 2018. "High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model" Remote Sensing 10, no. 11: 1682. https://doi.org/10.3390/rs10111682
APA StyleThorp, K. R., Thompson, A. L., Harders, S. J., French, A. N., & Ward, R. W. (2018). High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model. Remote Sensing, 10(11), 1682. https://doi.org/10.3390/rs10111682