Indirect Assessment of Sedimentation in Hydropower Dams Using MODIS Remote Sensing Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Paranapanema River Catchment
2.2. Characteristics of the Hydropower Dams
2.3. Water Quality Database
2.4. Processing of Remote Sensing Images
2.5. Assessment of Reservoir Sedimentation
3. Results
3.1. Surface Reflectance Temporal Behavior
3.2. Satellite-Based Turbidity Retrieval Model
3.3. Analysis of the Seasonal Turbidity Pattern Derived from Modis Images
3.4. Retrieval of the Spatiotemporal Sedimentation Patterns in the Jurumirim Reservoir
3.5. Dam Operation Demonstrated by Remote Sensing Analyses
3.6. Quantification of Reservoir Sediment Trap Efficiency
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brandt, S.A. Classification of geomorphological effects downstream of dams. Catena 2000, 40, 375–401. [Google Scholar] [CrossRef]
- Kempe, S. Impact of Aswan High Dam on Water Chemistry of the Nile. Transport of Carbon and Minerals in Major World Rivers, Pt. 2. Mitt Geol.-Palaeont. Inst. Univ. Hamburg. SCOPE/UNEP Sonderbd. 1983, 55, 401–423. [Google Scholar]
- Humborg, C.; Ittekkot, V.; Cociasu, A.; Bodungen, B.V. Effect of Danube River dam on Black Sea biogeochemistry and ecosystem structure. Nature 1997, 386, 385–388. [Google Scholar] [CrossRef]
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams. Earthscan Publications Ltd., 2000; p. 404. Available online: https://www.internationalrivers.org/sites/default/files/attached-files/world_commission_on_dams_final_report.pdf (accessed on 24 July 2018).
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Moran, E.F.; Lopez, M.C.; Moore, N.; Müller, N.; Hyndman, D.W. Sustainable hydropower in the 21st century. Proc. Natl. Acad. Sci. USA 2018, 115, 11891–11898. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, A.; Shah, F.; Dinar, A. Economics of reservoir sedimentation and sustainable management of dams. J. Environ. Manag. 2001, 61, 149–163. [Google Scholar] [CrossRef]
- Morris, G.; Fan, J. Reservoir Sedimentation Handbook; McGraw-Hill Book Co.: New York, NY, USA, 1998. [Google Scholar]
- Bishwakarma, M.B.; Støle, H. Real-time sediment monitoring in hydropower plants. J. Hydraul. Res. 2008, 46, 282–288. [Google Scholar] [CrossRef]
- Kelman, J.; Pereira, M.V.F.; Neto, T.A.A.; Sales, P.D.H.; Vieira, A.D.M. Hidreletricidade. In Águas Doces no Brasil: Capital Ecológico, uso e Conservação, 3nd ed.; Rebouças, A.C., Braga, B., Tundisi, J.G., Eds.; Escrituras: São Paulo, Brazil, 2006; pp. 507–543. ISBN 8586303410. [Google Scholar]
- Stevaux, J.C.; Martins, D.P.; Meurer, M. Changes in a large regulated tropical river: The Paraná River downstream from the Porto Primavera Dam, Brazil. Geomorphology 2009, 113, 230–238. [Google Scholar] [CrossRef]
- Walling, D.E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges; Unesco-IHP: Paris, France, 2009; p. 26. [Google Scholar]
- Kirk, J.T. Light and Photosynthesis in Aquatic Ecosystems; Cambridge University Press: Cambridge, UK, 2011; p. 662. ISBN 9780521151757. [Google Scholar]
- Babin, M.; Morel, A.; Fournier-Sicre, V.; Fell, F.; Stramski, D. Light scattering properties of marine particles in coastal and open ocean waters as related to the particle mass concentration. Limnol. Oceanogr. 2003, 48, 843–859. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.M.; Espinoza-Villar, R.; Armijos, E.; Silva Moreira, L. The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter. J. Geophys. Res. Earth Surf. 2015, 120, 1274–1287. [Google Scholar] [CrossRef] [Green Version]
- Neukermans, G.; Loisel, H.; Mériaux, X.; Astoreca, R.; McKee, D. In situ variability of mass-specific beam attenuation and backscattering of marine particles with respect to particle size, density, and composition. Limnol. Oceanogr. 2012, 57, 124–144. [Google Scholar] [CrossRef]
- Snyder, W.A.; Arnone, R.A.; Davis, C.O.; Goode, W.; Gould, R.W.; Ladner, S.; Weidemann, A. Optical scattering and backscattering by organic and inorganic particulates in US coastal waters. Appl. Opt. 2008, 47, 666–677. [Google Scholar] [CrossRef]
- Song, K.S.; Li, L.; Tedesco, L.; Duan, H.T.; Li, L.; Du, J. Remote Quantification of Total Suspended Matter through Empirical Approaches for Inland Waters. J. Environ. Inf. 2014, 23, 23–36. [Google Scholar] [CrossRef]
- Kumar, A.; Equeenuddin, S.M.; Mishra, D.R.; Acharya, B.C. Remote monitoring of sediment dynamics in a coastal lagoon: Long-term spatio-temporal variability of suspended sediment in Chilika Estuarine. Coast. Shelf Sci. 2016, 170, 155–172. [Google Scholar] [CrossRef]
- Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller–Karger, F.E. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, FL. Remote Sens. Environ. 2004, 93, 423–441. [Google Scholar] [CrossRef]
- Wang, H.; Hladik, C.M.; Huang, W.; Milla, K.; Edmiston, L.; Harwell, M.A.; Schalles, J.F. Detecting the spatial and temporal variability of chlorophyll-a concentration and total suspended solids in Apalachicola Bay, Florida using MODIS imagery. Int. J. Remote Sens. 2010, 31, 439–453. [Google Scholar] [CrossRef]
- Montanher, O.C.; Novo, E.M.; Barbosa, C.C.; Rennó, C.D.; Silva, T.S. Empirical models for estimating the suspended sediment concentration in Amazonian white water rivers using Landsat 5/TM. Int. J. Appl. Earth Obs. Geoinf. 2014, 29, 67–77. [Google Scholar] [CrossRef]
- Park, E.; Latrubesse, E.M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 2014, 147, 232–242. [Google Scholar] [CrossRef]
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An assessment of remote sensing algorithms for colored dissolved organic matter in complex freshwater environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Robert, E.; Grippa, M.; Kergoat, L.; Pinet, S.; Gal, L.; Cochonneau, G.; Martinez, J.M. Monitoring water turbidity and surface suspended sediment concentration of the Bagre Reservoir (Burkina Faso) using MODIS and field reflectance data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 243–251. [Google Scholar] [CrossRef]
- Long, C.M.; Pavelsky, T.M. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 2013, 129, 197–209. [Google Scholar] [CrossRef]
- Chen, S.; Han, L.; Chen, X.; Li, D.; Sun, L.; Li, Y. Estimating wide range Total Suspended Solids concentrations from MODIS 250-m imageries: An improved method. ISPRS J. Photogram. Remote Sens. 2015, 99, 58–69. [Google Scholar] [CrossRef]
- Wang, J.-J.; Lu, X. Estimation of suspended sediment concentrations using Terra MODIS: An example from the Lower Yangtze River, China. Sci. Total Environ. 2010, 408, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.L.M.R.; Martinez, J.M.; Filizola, N.P., Jr.; Armijos, E.; Alves, L.G.S. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000–2015). Comptes Rendus Geosci. 2017, 350, 13–19. [Google Scholar] [CrossRef]
- Martinez, J.M.; Guyot, J.-L.; Filizola, N.; Sondag, F. Increase in suspended sediment discharge of the Amazon River assessed by monitoring network and satellite data. Catena 2009, 79, 257–264. [Google Scholar] [CrossRef]
- Villar, R.E.; Martinez, J.M.; Guyot, J.L.; Fraizy, P.; Armijos, E.; Crave, A.; Bazán, H.; Vauchel, P.; Lavado, W. The integration of field measurements and satellite observations to determine river solid loads in poorly monitored basins. J. Hydrol. 2012, 444, 221–228. [Google Scholar] [CrossRef]
- Mangiarotti, S.; Martinez, J.M.; Bonnet, M.P.; Buarque, D.C.; Filizola, N.; Mazzega, P. Discharge and suspended sediment flux estimated along the mainstream of the Amazon and the Madeira Rivers (from in situ and MODIS Satellite Data). J. Appl. Earth Obs. Geoinf. 2013, 21, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Latrubesse, E.M.; Arima, E.Y.; Dunne, T.; Park, E.; Baker, V.R.; d’Horta, F.M.; Ribas, C.C. Damming the rivers of the Amazon basin. Nature 2017, 546, 363–369. [Google Scholar] [CrossRef] [Green Version]
- Villar, R.E.; Martinez, J.M.; Le Texier, M.; Guyot, J.L.; Fraizy, P.; Meneses, P.R.; Oliveira, E. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. J. South Am. Earth Sci. 2013, 44, 45–54. [Google Scholar] [CrossRef]
- Lima, J.E.F.W.; Lopes, W.T.A.; Silva, E.M. Diagnóstico do Fluxo de Sedimentos em Suspensão na Bacia do Rio Paranapanema. In Proceedings of the XVI Simpósio Brasileiro de Recursos Hídricos (SBRH), João Pessoa, Brazil, 20–25 November 2005; Available online: https://bit.ly/2Trin1t (accessed on 24 July 2018).
- Nogueira, J.A.; Vianna, N.C.; Britto, Y.C. Reservatórios em cascata e os efeitos na limnologia e organização das comunidades bióticas (fitoplâncton, zooplâncton e zoobentos): Um estudo de caso no rio Paranapanema (SP/PR). In Ecologia de Reservatórios: Estrutura, Função e Aspectos Sociais; Henry, R., Ed.; FUNDIBIO: Botucatu, Brazil, 2006; p. 800. ISBN 9788590112914. [Google Scholar]
- Agência Nacional de Águas. A Navegação Interior e sua Interface com o Setor de Recursos Hídricos no Brasil e Aproveitamento do Potencial Hidráulico para Geração de Energia no Brasil; Cadernos de Recursos Hídricos; Agência Nacional de Águas: Brasília, Brazil, 2012; Volume 3, p. 170.
- Ferrareze, M.; Nogueira, M.G. Phytoplankton assemblages and limnological characteristics in lotic systems of the Paranapanema Basin (Southeast Brazil). Acta Limnol. Bras. 2006, 18, 389–405. [Google Scholar]
- Nogueira, G.M.; Naliato, D.A.O.; Perbiche-Neves, G. Limnology of Two Contrasting Hydroelectric Reservoirs (Storage and Run-of-River) in Southeast Brazil; INTECH Open Access Publisher: London, UK, 2012; Available online: https://bit.ly/2Ry0zzQ (accessed on 25 July 2018).
- Nogueira, G.M.; Henry, R.; Maricatto, F.E. Spatial and temporal heterogeneity in the Jurumirim reservoir, São Paulo, Brazil. Lakes Reserv. Res. Manag. 1999, 4, 107–120. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Ferrareze, M.; Moreira, M.; Gouvêa, R. Phytoplankton assemblages in a reservoir cascade of a large tropical-subtropical river (SE, Brazil). Braz. J. Biol. 2010, 70, 781–793. [Google Scholar] [CrossRef]
- Nogueira, M.G.; Oliveira, P.C.R.; de Britto, Y.T. Zooplankton assemblages (Copepoda and Cladocera) in a cascade of reservoirs of a large tropical river (SE Brazil). Limnetica 2008, 27, 151–169. [Google Scholar]
- Agência Nacional de Águas. A Navegação Interior. Caderno de Recursos Hidricos, 3; Agência Nacional de Águas: Brasília, Brazil, 2007; 170p.
- APHA. Standard Methods for the Examination of Water and Waste Water, 22th ed.; American Public Health Association: Washington, DC, USA, 2012; pp. 2–15. ISBN 9780875530130. [Google Scholar]
- Rymszewicz, A.; O’Sullivan, J.J.; Bruen, M.; Turner, J.N.; Lawler, D.M.; Conroy, E.; Kelly-Quinn, M. Measurement differences between turbidity instruments, and their implications for suspended sediment concentration and load calculations: A sensor inter-comparison study. J. Environ. Manag. 2017, 199, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.E.T.; Menezes, P.H.B.J.; Martinez, J.M.; Roig, H.L.; Villar, R.A.E. Use of MODIS images to monitor the sediment inflow into the Três Marias reservoir. R. Bras. Eng. Agríc. Ambiental. 2014, 18, 507–516. [Google Scholar] [CrossRef]
- Verstraeten, G.; Poesen, J. Estimating trap efficiency of small reservoirs and ponds: Methods and implications for the assessment of sediment yield. Prog. Phys. Geogr. 2000, 24, 219–251. [Google Scholar] [CrossRef]
- Brune, G.M. Trap efficiency of reservoirs. Eos Trans. Am. Geophys. Union 1953, 34, 407–418. [Google Scholar] [CrossRef]
- Churchill, M.A. Discussion of paper by L. C. Gottschalk “Analyses and use of reservoir sedimentation data”. In Federal Inter-Agency Sedimentation Conference Proceedings; USGS: Denver, CO, USA, 1948; pp. 139–140. [Google Scholar]
- Heinemann, H.G. A new sediment trap efficiency curve for small reservoirs. Water Resour. Bull. 1981, 17, 825–830. [Google Scholar] [CrossRef]
- Rouse, H. Experiments on the Mechanics of Sediment Suspension. In Fifth International Congress for Applied Mechanics; Wiley: Cambridge, UK, 1938. [Google Scholar]
- Gill, M.A. Sedimentation and useful life of reservoirs. J. Hydrol. 1979, 44, 89–95. [Google Scholar] [CrossRef]
- Lewis, S.E.; Bainbridge, Z.T.; Kuhnert, P.M.; Sherman, B.S.; Henderson, B.; Dougall, C.; Brodie, J.E. Calculating sediment trapping efficiencies for reservoirs in tropical settings: A case study from the Burdekin Falls Dam, NE Australia. Water Resour. Res. 2013, 49, 1017–1029. [Google Scholar] [CrossRef] [Green Version]
- Fylstra, D.; Lasdon, L.; Watson, J.; Waren, A. Design and use of the Microsoft Excel Solver. Interfaces 1998, 28, 29–55. [Google Scholar] [CrossRef]
- Wehrens, R.; Putter, H.; Buydens, L.M.C. The bootstrap: A tutorial. Chemom. Intell. Lab. Syst. 1999, 54, 35–52. [Google Scholar] [CrossRef]
- Henry, R.; Maricato, F. Sedimentation rates of tripton in Jurumirim Reservoir (São Paulo, Brazil). Limnologica 1996, 5–25. Available online: http://hdl.handle.net/11449/64734 (accessed on 24 July 2018).
- Naliato, D.A.O.; Nogueira, M.G.; Perbiche-Neves, G. Discharge pulses of hydroelectric dams and their effects in the downstream limnological conditions: A case study in a large tropical river (SE Brazil). Lakes Reserv. Res. Manag. 2009, 14, 301–314. [Google Scholar] [CrossRef]
- Ferrareze, M.; Casatti, L.; Nogueira, M.G. Spatial heterogeneity affecting fish fauna in cascade reservoirs of the Upper Paraná Basin, Brazil. Hydrobiologia 2014, 738, 97–109. [Google Scholar] [CrossRef]
- Ferrareze, M.; Nogueira, M.G. Phytoplankton assemblages in lateral lagoons of a large tropical reservoir. Braz. J. B. 2013, 73, 163–171. [Google Scholar] [CrossRef] [Green Version]
- Uncles, R.J.; Mitchell, S.B. (Eds.) Estuarine and Coastal Hydrography and Sediment Transport; Cambridge University Press: Cambridge, UK, 2017; ISBN 9781139644426. [Google Scholar]
- Gordon, H.R.; McCluney, W.R. Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl. Opt. 1975, 14, 413–416. [Google Scholar] [CrossRef]
- Jorcin, A.; Nogueira, M.G. Temporal and spatial patterns based on sediment and sediment–water interface characteristics along a cascade of reservoirs (Paranapanema River, south-east Brazil). Lakes Reserv. Res. Manag. 2005, 10, 1–12. [Google Scholar] [CrossRef]
- Departamento de Águas e Energia Elétrica. Plano Estadual de Recursos Hídricos 2004–2007; Departamento de Águas e Energia Elétrica (DNAE): São Paulo, Brazil, 2007; p. 92. Available online: http://www.daee.sp.gov.br/acervoepesquisa/perh/perh2204_2207/perh20042007.htm (accessed on 12 October 2018).
- Sartori, L.; Nogueira, M.; Henry, R.; Moretto, E. Zooplankton fluctuations in Jurumirim Reservoir (São Paulo, Brazil): A three-year study. Braz. J. Biol. 2009, 69, 1–18. [Google Scholar] [CrossRef]
- Jorgensen, S.E.; Loffler, H.; Rast, W.; Straskraba, M. Lake and Reservoir Management, 54; Elsevier: Amsterdam, The Netherlands, 2005; p. 325. ISBN 0444516786. [Google Scholar]
- Mano, V.; Némery, J.; Belleudy, P.; Poirel, A. Assessment of suspended sediment transport in four alpine watersheds (France): Influence of the climatic regime. Hydrol. Process. 2009, 14, 777–792. [Google Scholar] [CrossRef]
Reservoirs | Open Water Mean Area (km2) 1 | Drainage Area (km2) 2 | Mean Water Residence Time (days) 3 | Mean Reservoir Depth (m) 3 | Mean Output Flow (m3 s−1) 3 |
---|---|---|---|---|---|
I-Jurumirim | 449 | 17,891 | 340 | 14.7 | 236 |
II-Chavantes | 400 | 27,769 | 312 | 21.2 | 324 |
III-Canoas II | 23 | 39,531 | 7 | 6.0 | 477 |
IV-Capivara | 576 | 84,715 | 111 | 17.6 | 1091 |
V-Taquaruçu | 80 | 88,707 | 8 | 8.9 | 1137 |
VI-Rosana | 220 | 100,799 | 17 | 8.7 | 1289 |
Reservoir | Reflectance Mean | Reflectance Minimum | Reflectance Maximum | Mean Water Discharge (m3 s−1) | Minimum Water Discharge (m3 s−1) | Maximum Water Discharge (m3 s−1) |
---|---|---|---|---|---|---|
I-Jurumirim | 0.03 | 0.01 | 0.07 | 236 | 41 | 1135 |
II-Chavantes | 0.03 | 0.01 | 0.1 | 324 | 85 | 1748 |
III-Canoas II | 0.06 | 0.03 | 0.12 | 477 | 152 | 2326 |
IV-Capivara | 0.05 | 0.01 | 0.11 | 1091 | 236 | 7763 |
V-Taquaruçu | 0.05 | 0.01 | 0.11 | 1137 | 354 | 8149 |
VI-Rosana | 0.05 | 0.01 | 0.15 | 1288 | 412 | 8202 |
Reservoirs | Position | Turbidity Calculated (NTU) | |||
---|---|---|---|---|---|
Mean | Mean Jan/Feb | Minimum | Maximum | ||
I-Jurumirim | Dam | 4.7 | 4.4 | 2.9 | 12.5 |
Upstream | 12.4 | 23.1 | 4.1 | 43.6 | |
II-Chavantes | Dam | 5.1 | 6.4 | 3.0 | 20.7 |
Upstream | 8.8 | 11.2 | 2.9 | 41.2 | |
III-Canoas II | Dam | 10.0 | 15.3 | 4.4 | 37.3 |
Upstream | 10.0 | 14.8 | 4.6 | 27.0 | |
IV-Capivara | Dam | 8.4 | 10.0 | 3.1 | 31.3 |
Upstream | 13.3 | 21.9 | 3.3 | 67.6 | |
V-Taquaruçu | Dam | 10.0 | 12.1 | 4.1 | 41.6 |
Upstream | 11.5 | 16.8 | 4.2 | 76.4 | |
VI-Rosana | Dam | 9.5 | 12.2 | 2.8 | 70.4 |
Upstream | 11.2 | 14.8 | 3.8 | 51.2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Condé, R.d.C.; Martinez, J.-M.; Pessotto, M.A.; Villar, R.; Cochonneau, G.; Henry, R.; Lopes, W.; Nogueira, M. Indirect Assessment of Sedimentation in Hydropower Dams Using MODIS Remote Sensing Images. Remote Sens. 2019, 11, 314. https://doi.org/10.3390/rs11030314
Condé RdC, Martinez J-M, Pessotto MA, Villar R, Cochonneau G, Henry R, Lopes W, Nogueira M. Indirect Assessment of Sedimentation in Hydropower Dams Using MODIS Remote Sensing Images. Remote Sensing. 2019; 11(3):314. https://doi.org/10.3390/rs11030314
Chicago/Turabian StyleCondé, Rita de Cássia, Jean-Michel Martinez, Marco Aurélio Pessotto, Raúl Villar, Gérard Cochonneau, Raoul Henry, Walszon Lopes, and Marcos Nogueira. 2019. "Indirect Assessment of Sedimentation in Hydropower Dams Using MODIS Remote Sensing Images" Remote Sensing 11, no. 3: 314. https://doi.org/10.3390/rs11030314
APA StyleCondé, R. d. C., Martinez, J.-M., Pessotto, M. A., Villar, R., Cochonneau, G., Henry, R., Lopes, W., & Nogueira, M. (2019). Indirect Assessment of Sedimentation in Hydropower Dams Using MODIS Remote Sensing Images. Remote Sensing, 11(3), 314. https://doi.org/10.3390/rs11030314