Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M1 Detection in Milk and Dairy Products
Abstract
:1. Introduction
Occurrence and Toxicity
- Group 1—carcinogenic to humans;
- Group 2A—probably carcinogenic to humans (limited evidence on humans but sufficient in animals);
- Group 2B—possibly carcinogenic to humans (limited evidence to humans and not sufficient evidence to animals);
- Group 3—not classifiable as to its carcinogenicity to humans;
- Group 4—probably not carcinogenic to humans.
2. Aflatoxins
Aflatoxin M1
3. Detection of AFM1
3.1. Conventional Methods for Aflatoxin M1 Detection
3.1.1. Chromatographic Methods
Thin Layer Chromatography (TLC)
High-Performance Liquid Chromatography (HPLC)
Fluorescence Spectrophotometric Methods
3.1.2. Immunochemical Methods
3.2. Immunosensors
3.2.1. Electrochemiluminescence
3.2.2. Electrochemical Immunosensors
3.2.3. Optical Immunosensors
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Sweeney, M.J.; Dobson, A.D.W. Mycotoxin production by aspergillus, fusarium and penicillium species. Int. J. Food Microbiol. 1998, 43, 141–158. [Google Scholar] [CrossRef]
- Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: Occurrence, toxicology, and exposure assessment. Food Chem. Toxicol. 2013, 60, 218–237. [Google Scholar] [CrossRef] [PubMed]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, E.A. Clinicopathological studies on the effect of fusarium mycotoxin on hematological and biochemical parameters in broiler chickens. Glob. Vet. 2014, 12, 885–890. [Google Scholar] [CrossRef]
- Chen, Z.Y.; Rajasekaran, K.; Brown, R.L.; Sayler, R.J.; Bhatnagar, D. Discovery and confirmation of genes/proteins associated with maize aflatoxin resistance. World Mycotoxin J. 2015, 8, 211–224. [Google Scholar] [CrossRef]
- Steyn, P.S. Mycotoxins, general view, chemistry and structure. Toxicol. Lett. 1995, 82–83, 843–851. [Google Scholar] [CrossRef]
- Pitt, J.I. Toxigenic fungi: Which are important? Med. Mycol. 2000, 38, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Bosco, F.; Mollea, C. Mycotoxins in Food; InTech: Rijeka, Croatia, 2012. [Google Scholar] [CrossRef]
- Milicevic, D.R.; Skrinjar, M.; Baltic, T. Real and perceived risks for mycotoxin contamination in foods and feeds: Challenges for food safety control. Toxins 2010, 2, 572–592. [Google Scholar] [CrossRef] [PubMed]
- Zain, M.E. Impact of mycotoxins on humans and animals. J. Saudi Chem. Soc. 2011, 15, 129–144. [Google Scholar] [CrossRef]
- Rodricks, J.V. Mycotoxins in Human and Animal Health; Pathotox Publishers: Park Forest South, IL, USA, 1977; p. 656, ISBN 0930376005, 9780930376000. [Google Scholar]
- Stoloff, L. Aflatoxin as a cause of primary liver-cell cancer in the united states: A probability study. Nutr. Cancer 1983, 5, 165–186. [Google Scholar] [CrossRef] [PubMed]
- Ueno, Y. Trichothecenes: Chemical, Biological, and Toxicological Aspects; Kodansha: New York, NY, USA, 1983; ISBN 0444996613. [Google Scholar]
- Niessen, L. Pcr-based diagnosis and quantification of mycotoxin producing fungi. Int. J. Food Microbiol. 2007, 119, 38–46. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer (IARC). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2002; Volume 82, p. 171. ISBN 92-832-1282-7. [Google Scholar]
- Mazzoni, E.; Scandolara, A.; Giorni, P.; Pietri, A.; Battilani, P. Field control of fusarium ear rot, ostrinia nubilalis (hübner), and fumonisins in maize kernels. Pest Manag. Sci. 2011, 67, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Wogan, G.N. Aflatoxins as risk-factors for hepatocellular-carcinoma in humans. Cancer Res. 1992, 52, S2114–S2118. [Google Scholar]
- Murphy, P.A.; Hendrich, S.; Landgren, C.; Bryant, C.M. Food mycotoxins: An update. J. Food Sci. 2006, 71, R51–R65. [Google Scholar] [CrossRef]
- Pereira, V.L.; Fernandes, J.O.; Cunha, S.C. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends Food Sci. Technol. 2014, 36, 96–136. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). Mycotoxins Food Safety and Quality. Available online: http://www.fao.org/food/food-safety-quality/a-zindex/mycotoxins/en/ (accessed on 22 January 2013).
- European Commission. Commission Regulation (ec) No. 466/2001 Setting Maximum Levels for Certain Contaminants in Foodstuffs; EU Law Publication: Luxembourg, 2001. [Google Scholar]
- European Commission. Commission Regulation (EC) No. 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs; EU Law Publication: Luxembourg, 2006. [Google Scholar]
- European Commission. European Commission (EC) No. 1126/2007 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Fusarium Toxins in Maize and Maize Products; EU Law Publication: Luxembourg, 2007. [Google Scholar]
- European Commission. Commission Regulation (EU) No 165/2010 of 26 February 2010 Amending Regulation (EC) No 1881/2006 Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Aflatoxins; Official Journal of the European Union: Luxembourg, 2010; pp. 8–12. [Google Scholar]
- Alshannaq, A.; Yu, J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. Int. J. Environ. Res. Public Health 2017, 14, 632. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (US-FDA). Mycotoxins; CRA Food Saftey Information Papers; US-FDA: Silver Spring, ML, USA, 2011; pp. 1–15.
- Bankole, S.A.; Adebanjo, A. Mycotoxins in food in west africa: Current situation and possibilities of controlling it. Afr. J. Biotechnol. 2003, 2, 254–263. [Google Scholar] [CrossRef]
- Gowda, N.K.S.; Swamy, H.V.L.N.; Mahajan, P. Recent advances for control, counteraction and amelioration of potential aflatoxins in animal feeds. In Aflatoxins—Recent Advances and Future Prospects; Razzaghi-Abyaneh, M., Ed.; InTech: Rijeka, Croatia, 2013; Charpter 6. [Google Scholar] [CrossRef]
- Nguefack, J.; Leth, V.; Zollo, P.H.A.; Mathur, S.B. Evaluation of five essential oils from aromatic plants of cameroon for controlling food spoilage and mycotoxin producing fungi. Int. J. Food Microbiol. 2004, 94, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.N.; Nurdijati, S.B.; Salleh, B. An overview of plant-derived products on control of mycotoxigenic fungi and mycotoxins. Asian J. Plant Sci. 2010, 9, 126–133. [Google Scholar] [CrossRef]
- Thembo, K.M.; Vismer, H.F.; Nyazema, N.Z.; Gelderblom, W.C.A.; Katerere, D.R. Antifungal activity of four weedy plant extracts against selected mycotoxigenic fungi. J. Appl. Microbiol. 2010, 109, 1479–1486. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, A.; Bullerman, L.B. Biological control of molds and mycotoxins in foods. In Mycotoxin Prevention and Control in Agriculture; American Chemical Society: Washington, DC, USA, 2009; Volume 1031, pp. 1–16. [Google Scholar] [CrossRef]
- Ember, L. Charges of toxic arms use by iraq escalate. Chem. Eng. News 1984, 62, 16–18. [Google Scholar] [CrossRef]
- Vidal, J.C.; Bonel, L.; Ezquerra, A.; Hernández, S.; Bertolín, J.R.; Cubel, C.; Castillo, J.R. Electrochemical affinity biosensors for detection of mycotoxins: A review. Biosens. Bioelectron. 2013, 49, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R.M. Fungi and fungal toxins as weapons. Mycol. Res. 2006, 110, 1003–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franz, D.R. Defense Against Toxin Weapons. Med. Asp. Chem. Biol. Warf. 1996, 6, 603–619. [Google Scholar]
- Mejri Omrani, N.; Hayat, A.; Korri-Youssoufi, H.; Marty, J.L. Electrochemical biosensors for food security: Mycotoxins detection. In Biosensors for Security and Bioterrorism Applications; Nikolelis, D.P., Nikoleli, G.-P., Eds.; Springer: Berlin, Germany, 2016; pp. 469–490. [Google Scholar]
- Wilson, D.M.; Mubatanhema, W.; Jurjevic, Z. Biology and ecology of mycotoxigenic aspergillus species as related to economic and health concerns. In Mycotoxins and Food Safety; DeVries, J.W., Trucksess, M.W., Jackson, L.S., Eds.; Kluwer Academic/Plenum Publ.: New York, NY, USA, 2002; Volume 504, pp. 3–17. [Google Scholar] [CrossRef]
- Shephard, G.S. Aflatoxin analysis at the beginning of the twenty-first century. Anal. Bioanal. Chem. 2009, 395, 1215–1224. [Google Scholar] [CrossRef] [PubMed]
- Prandini, A.; Tansini, G.; Sigolo, S.; Filippi, L.; Laporta, M.; Piva, G. On the occurrence of aflatoxin M1 in milk and dairy products. Food Chem. Toxicol. 2009, 47, 984–991. [Google Scholar] [CrossRef] [PubMed]
- Campagnollo, F.B.; Ganev, K.C.; Khaneghah, A.M.; Portela, J.B.; Cruz, A.G.; Granato, D.; Corassin, C.H.; Oliveira, C.A.F.; Sant’Ana, A.S. The occurrence and effect of unit operations for dairy products processing on the fate of aflatoxin M1: A review. Food Control 2016, 68, 310–329. [Google Scholar] [CrossRef]
- Santini, A.; Raiola, A.; Ferrantelli, V.; Giangrosso, G.; Macaluso, A.; Bognanno, M.; Galvano, F.; Ritieni, A. Aflatoxin m-1 in raw, uht milk and dairy products in sicily (Italy). Food Addit. Contam. Part B 2013, 6, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Bartoszek, A. Genotoxic food components. In Carcinogenic and Anticarcinogenic Food Components; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-0-8493-2096-5. [Google Scholar]
- Troxel, C.M.; Reddy, A.P.; O’Neal, P.E.; Hendricks, J.D.; Bailey, G.S. In vivo aflatoxin B1 metabolism and hepatic DNA adduction in zebrafish (danio rerio). Toxicol. Appl. Pharmacol. 1997, 143, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Ketney, O.; Ovidiu, T.; Tifrea, A. Structural diversity and biochemical and microbiological characteristics of aflatoxins. In Acta Universitatis Cibiniensis. Series E: Food Technology; De Gruyter Open: Warsaw, Poland, 2014; Volume 18, p. 3. [Google Scholar] [CrossRef]
- Peers, F.G.; Linsell, C.A. Dietary aflatoxins and liver cancer—A population based study in kenya. Br. J. Cancer 1973, 27, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Vanrensburg, S.J.; Cookmozaffari, P.; Vanschalkwyk, D.J.; Vanderwatt, J.J.; Vincent, T.J.; Purchase, I.F. Hepatocellular-carcinoma and dietary aflatoxin in mozambique and transkei. Br. J. Cancer 1985, 51, 713–726. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Opinion of the Scientific Panel on Contaminants in the Food Chain on a Request from the Commission Related to the Potential Increase of Consumer Health Risk by a Possibleincrease of the Existing Maximum Levels for Aflatoxins in Almonds, Hazelnuts and Pistachios and Derived; EFSA: Parma, Italy, 2007; pp. 1–127.
- Jalili, M.; Scotter, M. A review of aflatoxin M1 in liquid milk. Iran. J. Health Saf. Environ. 2015, 2, 283–295. [Google Scholar]
- El-Tras, W.F.; El-Kady, N.N.; Tayel, A.A. Infants exposure to aflatoxin M1 as a novel foodborne zoonosis. Food Chem. Toxicol. 2011, 49, 2816–2819. [Google Scholar] [CrossRef] [PubMed]
- Gürbay, A.; Sabuncuoğlu, S.A.; Girgin, G.; Şahin, G.; Yiğit, Ş.; Yurdakök, M.; Tekinalp, G. Aflatoxin M1 levels in breast milk samples from ankara, turkey. Toxicol. Lett. 2010, 196, S345. [Google Scholar] [CrossRef]
- De Roma, A.; Rossini, C.; Ritieni, A.; Gallo, P.; Esposito, M. A survey on the aflatoxin M1 occurrence and seasonal variation in buffalo and cow milk from southern italy. Food Control 2017, 81, 30–33. [Google Scholar] [CrossRef]
- Neal, G.E.; Eaton, D.L.; Judah, D.J.; Verma, A. Metabolism and toxicity of aflatoxins M1 and B1 in human-derived in vitro systems. Toxicol. Appl. Pharmacol. 1998, 151, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.A.; Wang, S.; Allan, R.D.; Kennedy, I.R. A rapid aflatoxin B1 ELISA: Development and validation with reduced matrix effects for peanuts, corn, pistachio, and soybeans. J. Agric. Food Chem. 2004, 52, 2746–2755. [Google Scholar] [CrossRef] [PubMed]
- Cichna-Markl, M. New strategies in sample clean-up for mycotoxin analysis. World Mycotoxin J. 2011, 4, 203–215. [Google Scholar] [CrossRef]
- Kim, E.K.; Shon, D.H.; Ryu, D.; Park, J.W.; Hwang, H.J.; Kim, Y.B. Occurrence of aflatoxin M1 in korean dairy products determined by ELISA and HPLC. Food Addit. Contam. 2000, 17, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Kamkar, A. A study on the occurrence of aflatoxin M1 in iranian feta cheese. Food Control 2006, 17, 768–775. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, X.J.; Liu, Y.Q.; Yang, H.M.; Guo, Q.L. Determination of aflatoxin M1 in milk by triple quadrupole liquid chromatography-tandem mass spectrometry. Food Addit. Contam. 2010, 27, 1261–1265. [Google Scholar] [CrossRef] [PubMed]
- Chiavaro, E.; Cacchioli, C.; Berni, E.; Spotti, E. Immunoaffinity clean-up and direct fluorescence measurement of aflatoxins B1 and M1 in pig liver: Comparison with high-performance liquid chromatography determination. Food Addit. Contam. 2005, 22, 1154–1161. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Velasco, M.L.; Calonge Delso, M.M.; Ordónez Escudero, D. ELISA and HPLC determination of the occurrence of aflatoxin M1 in raw cow’s milk. Food Addit. Contam. 2003, 20, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Rosi, P.; Borsari, A.; Lasi, G.; Lodi, S.; Galanti, A.; Fava, A.; Girotti, S.; Ferri, E. Aflatoxin M1 in milk: Reliability of the immunoenzymatic assay. Int. Dairy J. 2007, 17, 429–435. [Google Scholar] [CrossRef]
- Mwanza, M.; Abdel-Hadi, A.; Ali, A.M.; Egbuta, M. Evaluation of analytical assays efficiency to detect aflatoxin M1 in milk from selected areas in egypt and south africa. J. Dairy Sci. 2015, 98, 6660–6667. [Google Scholar] [CrossRef] [PubMed]
- Bognanno, M.; La Fauci, L.; Ritieni, A.; Tafuri, A.; De Lorenzo, A.; Micari, P.; Di Renzo, L.; Ciappellano, S.; Sarullo, V.; Galvano, F. Survey of the occurrence of aflatoxin M1 in ovine milk by HPLC and its confirmation by MS. Mol. Nutr. Food Res. 2006, 50, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Bellio, A.; Bianchi, D.; Gramaglia, M.; Loria, A.; Nucera, D.; Gallina, S.; Gili, M.; Decastelli, L. Aflatoxin M1 in cow’s milk: Method validation for milk sampled in northern italy. Toxins 2016, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Liquid chromatography/tandem mass spectrometric confirmatory method for determining aflatoxin M1 in cow milk. J. Chromatogr. A 2006, 1101, 69–78. [Google Scholar] [CrossRef] [PubMed]
- De Iongh, H.R.V.; de Vogel, P. The occurrence and detection of aflatoxin in food. In Proceedings of the Symposium on Mycotoxins in Foodstuffs, Cambridge, MA, USA, 18–19 March 1964; Wogan, G.H., Ed.; M.I.T Press: Cambridge, MA, USA, 1964; p. 235. [Google Scholar]
- Betina, V. Chapter 7 thin-layer chromatography of mycotoxins. J. Chromatogr. Libr. 1993, 54, 141–251. [Google Scholar] [CrossRef]
- Gulyás, H. Determination of aflatoxins B1, B2, G1, G2 and M1 by high pressure thin layer chromatography. J. Chromatogr. 1985, 319, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Stroka, J.; Anklam, E. New strategies for the screening and determination of aflatoxins and the detection of aflatoxin-producing moulds in food and feed. Trends Anal. Chem. 2002, 21, 90–95. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, J.; Wang, P.; Wang, Y.; Chen, J. Thin-layer chromatography of mycotoxins and comparison with other chromatographic methods. J. Chromatogr. A 1998, 815, 3–20. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Q.; Zhang, W. Immunoassays for aflatoxins. Trends Anal. Chem. 2009, 28, 1115–1126. [Google Scholar] [CrossRef]
- Shuib, N.S.; Makahleh, A.; Salhimi, S.M.; Saad, B. Determination of aflatoxin M1 in milk and dairy products using high performance liquid chromatography-fluorescence with post column photochemical derivatization. J. Chromatogr. A 2017, 1510, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Joshua, H. Determination of aflatoxins by reversed-phase high-performance liquid chromatography with post-column in-line photochemical derivatization and fluorescence detection. J. Chromatogr. A 1993, 654, 247–254. [Google Scholar] [CrossRef]
- Chiavaro, E.; Dall’Asta, C.; Galaverna, G.; Biancardi, A.; Gambarelli, E.; Dossena, A.; Marchelli, R. New reversed-phase liquid chromatographic method to detect aflatoxins in food and feed with cyclodextrins as fluorescence enhancers added to the eluent. J. Chromatogr. A 2001, 937, 31–40. [Google Scholar] [CrossRef]
- Kos, J.; Hajnal, E.J.; Jajic, I.; Krstovic, S.; Mastilovic, J.; Saric, B.; Jovanov, P. Comparison of ELISA, HPLC-FLD and HPLC-MS/MS methods for determination of aflatoxin M1 in natural contaminated milk samples. Acta Chim. Slov. 2016, 63, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Fukayama, M.; Winterlin, W.; Hsieh, D.P. Rapid method for analysis of aflatoxin M1 in dairy products. J. Assoc. Off. Anal. Chem. 1980, 63, 927–930. [Google Scholar] [PubMed]
- Gauch, R.; Leuenberger, U.; Baumgartner, E. Rapid and simple determination of aflatoxin M1 in milk in the low parts per 1012 range. J. Chromatogr. A 1979, 178, 543–549. [Google Scholar] [CrossRef]
- Bakirci, I. A study on the occurrence of aflatoxin M1 in milk and milk products produced in van province of turkey. Food Control 2001, 12, 47–51. [Google Scholar] [CrossRef]
- Bijl, J.; van Peteghem, C. Rapid extraction and sample clean-up for the fluorescence densitometric determination of aflatoxin M1 in milk and mil powder. Anal. Chim. Acta 1985, 170, 149–152. [Google Scholar] [CrossRef]
- Kamkar, A. A study on the occurrence of aflatoxin M1 in raw milk produced in sarab city of iran. Food Control 2005, 16, 593–599. [Google Scholar] [CrossRef]
- Boudra, H.; Barnouin, J.; Dragacci, S.; Morgavi, D.P. Aflatoxin M1 and ochratoxin a in raw bulk milk from french dairy herds. J. Dairy Sci. 2007, 90, 3197–3201. [Google Scholar] [CrossRef] [PubMed]
- Decastelli, L.; Lai, J.; Gramaglia, M.; Monaco, A.; Nachtmann, C.; Oldano, F.; Ruffier, M.; Sezian, A.; Bandirola, C. Aflatoxins occurrence in milk and feed in northern italy during 2004–2005. Food Control 2007, 18, 1263–1266. [Google Scholar] [CrossRef]
- Kokkonen, M.; Jestoi, M.; Rizzo, A. Determination of selected mycotoxins in mould cheeses with liquid chromatography coupled to tandem with mass spectrometry. Food Addit. Contam. 2005, 22, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Manetta, A.C.; Di Giuseppe, L.; Giammarco, M.; Fusaro, I.; Simonella, A.; Gramenzi, A.; Formigoni, A. High-performance liquid chromatography with post-column derivatisation and fluorescence detection for sensitive determination of aflatoxin m-1 in milk and cheese. J. Chromatogr. A 2005, 1083, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Lei, S.; Liu, Y.; Xiao, D.; Fu, C.; Zhong, L.; Ouyang, H. Quantification of aflatoxin M1 in raw milk by a core-shell column on a conventional HPLC with large volume injection and step gradient elution. Food Control 2015, 51, 156–162. [Google Scholar] [CrossRef]
- Iha, M.H.; Barbosa, C.B.; Okada, I.A.; Trucksess, M.W. Occurrence of aflatoxin M1 in dairy products in brazil. Food Control 2011, 22, 1971–1974. [Google Scholar] [CrossRef]
- Sørensen, L.K.; Elbæk, T.H. Determination of mycotoxins in bovine milk by liquid chromatography tandem mass spectrometry. J. Chromatogr. B 2005, 820, 183–196. [Google Scholar] [CrossRef] [PubMed]
- Chew, Y.L.; Xing, J.; Lim, L.G.S.; Zhan, Z. A High Sensitivity LC/MS/MS Method with QuEChERS Sample Pre-treatment for Analysis of Aflatoxins in Milk Powder Samples. Available online: https://www.ssi.shimadzu.com/about/literature/asms2016/wednesday/wP-230.pdf (accessed on 20 June 2016).
- Huang, L.C.; Zheng, N.; Zheng, B.Q.; Wen, F.; Cheng, J.B.; Han, R.W.; Xu, X.M.; Li, S.L.; Wang, J.Q. Simultaneous determination of aflatoxin M1, ochratoxin a, zearalenone and α-zearalenol in milk by UHPLC–MS/MS. Food Chem. 2014, 146, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Afshar, P.; Shokrzadeh, M.; Kalhori, S.; Babaee, Z.; Saravi, S.S.S. Occurrence of ochratoxin a and aflatoxin M1 in human breast milk in sari, iran. Food Control 2013, 31, 525–529. [Google Scholar] [CrossRef]
- Bilandzic, N.; Tankovic, S.; Jelusic, V.; Varenina, I.; Kolanovic, B.S.; Luburic, D.B.; Cvetnic, Z. Aflatoxin M1 in raw and uht cow milk collected in bosnia and herzegovina and croatia. Food Control 2016, 68, 352–357. [Google Scholar] [CrossRef]
- Kav, K.; Col, R.; Tekinsen, K.K. Detection of aflatoxin M1 levels by ELISA in white-brined urfa cheese consumed in turkey. Food Control 2011, 22, 1883–1886. [Google Scholar] [CrossRef]
- Gan, N.; Zhou, J.; Xiong, P.; Hu, F.; Cao, Y.; Li, T.; Jiang, Q. An ultrasensitive electrochemiluminescent immunoassay for aflatoxin M1 in milk, based on extraction by magnetic graphene and detection by antibody-labeled cdte quantumn dots-carbon nanotubes nanocomposite. Toxins 2013, 5, 865–883. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Zhou, B.; Huang, Z.; Zhao, C.; Zhang, J.; Huang, B. A new method for determination of alfatoxin M1 in milk by ultrasensitive time-resolved fluoroimmunoassay. Food Anal. Methods 2017. [Google Scholar] [CrossRef]
- Garden, S.R.; Strachan, N.J.C. Novel colorimetric immunoassay for the detection of aflatoxin b-1. Anal. Chim. Acta 2001, 444, 187–191. [Google Scholar] [CrossRef]
- Andreou, V.G.; Nikolelis, D.P.; Tarus, B. Electrochemical investigation of transduction of interactions of aflatoxin M1 with bilayer lipid membranes (blms). Anal. Chim. Acta 1997, 350, 121–127. [Google Scholar] [CrossRef]
- Micheli, L.; Grecco, R.; Badea, M.; Moscone, D.; Palleschi, G. An electrochemical immunosensor for aflatoxin M1 determination in milk using screen-printed electrodes. Biosens. Bioelectron. 2005, 21, 588–596. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badea, M.; Micheli, L.; Messia, M.C.; Candigliota, T.; Marconi, E.; Mottram, T.; Velasco-Garcia, M.; Moscone, D.; Palleschi, G. Aflatoxin M1 determination in raw milk using a flow-injection immunoassay system. Anal. Chim. Acta 2004, 520, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Vdovenko, M.M.; Lu, C.C.; Yu, F.Y.; Sakharov, I.Y. Development of ultrasensitive direct chemiluminescent enzyme immunoassay for determination of aflatoxin M1 in milk. Food Chem. 2014, 158, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, N.; Ning, B.; Liu, M.; Lv, Z.; Sun, Z.; Peng, Y.; Chen, C.; Li, J.; Gao, Z. Simultaneous and rapid detection of six different mycotoxins using an immunochip. Biosens. Bioelectron. 2012, 34, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Wacoo, A.P.; Wendiro, D.; Vuzi, P.C.; Hawumba, J.F. Methods for detection of aflatoxins in agricultural food crops. J. Appl. Chem. 2014, 2014, 15. [Google Scholar] [CrossRef]
- Sargent, A.; Sadik, O.A. Monitoring antibody—Antigen reactions at conducting polymer-based immunosensors using impedance spectroscopy. Electrochim. Acta 1999, 44, 4667–4675. [Google Scholar] [CrossRef]
- Wang, X.; Niessner, R.; Tang, D.; Knopp, D. Nanoparticle-based immunosensors and immunoassays for aflatoxins. Anal. Chim. Acta 2016, 912, 10–23. [Google Scholar] [CrossRef] [PubMed]
- Dinckaya, E.; Kinik, O.; Sezginturk, M.K.; Altug, C.; Akkoca, A. Development of an impedimetric aflatoxin M1 biosensor based on a DNA probe and gold nanoparticles. Biosens. Bioelectron. 2011, 26, 3806–3811. [Google Scholar] [CrossRef] [PubMed]
- Dimitrieska-Stojkovic, E.; Stojanovska-Dimzoska, B.; Ilievska, G.; Uzunov, R.; Stojkovic, G.; Hajrulai-Musliu, Z.; Jankuloski, D. Assessment of aflatoxin contamination in raw milk and feed in macedonia during 2013. Food Control 2016, 59, 201–206. [Google Scholar] [CrossRef]
- Kunter, İ.; Hürer, N.; Gülcan, H.O.; Öztürk, B.; Doğan, İ.; Şahin, G. Assessment of aflatoxin M1 and heavy metal levels in mothers breast milk in famagusta, cyprus. Biol. Trace Elem. Res. 2017, 175, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.H.; Chu, K.C.; Yu, F.Y. Novel monoclonal antibody-based sensitive enzyme-linked immunosorbent assay and rapid immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 2016, 66, 1–7. [Google Scholar] [CrossRef]
- Paek, S.H.; Lee, S.H.; Cho, J.H.; Kim, Y.S. Development of rapid one-step immunochromatographic assay. Methods 2000, 22, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Parker, C.O.; Tothill, I.E. Development of an electrochemical immunosensor for aflatoxin M1 in milk with focus on matrix interference. Biosens. Bioelectron. 2009, 24, 2452–2457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radoi, A.; Targa, M.; Prieto-Simon, B.; Marty, J.L. Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. Talanta 2008, 77, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-J.; Liu, B.-H.; Hsu, Y.-T.; Yu, F.-Y. Sensitive competitive direct enzyme-linked immunosorbent assay and gold nanoparticle immunochromatographic strip for detecting aflatoxin M1 in milk. Food Control 2011, 22, 964–969. [Google Scholar] [CrossRef]
- Lamberti, L.M.A.I. Biosensors for aflatoxins detection. In Aflatoxins—Detection, Measurement and Control; Torres-Pacheco, I., Ed.; InTech: Rijeka, Croatia, 2011; pp. 147–160. ISBN 978-953-307-711-6. [Google Scholar]
- Maragos, C. Fluorescence polarization immunoassay of mycotoxins: A review. Toxins 2009, 1, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Jie, G.; Li, L.; Chen, C.; Xuan, J.; Zhu, J.-J. Enhanced electrochemiluminescence of cdse quantum dots composited with cnts and pdda for sensitive immunoassay. Biosens. Bioelectron. 2009, 24, 3352–3358. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.A.; Zhang, Y.Y.; Lei, J.P.; Xue, Y.D.; Cheng, L.X.; Ju, H.X. Quantum dots based electrochemiluminescent immunosensor by coupling enzymatic amplification with self-produced coreactant from oxygen reduction. Anal. Chem. 2010, 82, 7351–7356. [Google Scholar] [CrossRef] [PubMed]
- McAllister, M.J.; Li, J.L.; Adamson, D.H.; Schniepp, H.C.; Abdala, A.A.; Liu, J.; Herrera-Alonso, M.; Milius, D.L.; Car, R.; Prud’homme, R.K.; et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404. [Google Scholar] [CrossRef]
- Ricci, F.; Volpe, G.; Micheli, L.; Palleschi, G. A review on novel developments and applications of immunosensors in food analysis. Anal. Chim. Acta 2007, 605, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Ricci, F.; Adornetto, G.; Palleschi, G. A review of experimental aspects of electrochemical immunosensors. Electrochim. Acta 2012, 84, 74–83. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Baeumner, A.J.; Feller, K.-H. Rapid and sensitive inhibition-based assay for the electrochemical detection of ochratoxin a and aflatoxin M1 in red wine and milk. Electrochim. Acta 2017, 243, 82–89. [Google Scholar] [CrossRef]
- Paniel, N.; Radoi, A.; Marty, J.L. Development of an electrochemical biosensor for the detection of aflatoxin m-1 in milk. Sensors 2010, 10, 9439–9448. [Google Scholar] [CrossRef] [PubMed]
- Bacher, G.; Pal, S.; Kanungo, L.; Bhand, S. A label-free silver wire based impedimetric immunosensor for detection of aflatoxin M1 in milk. Sens. Actuator B Chem. 2012, 168, 223–230. [Google Scholar] [CrossRef]
- Banerjee, P.; Kintzios, S.; Prabhakarpandian, B. Biotoxin detection using cell-based sensors. Toxins 2013, 5, 2366–2383. [Google Scholar] [CrossRef] [PubMed]
- Valimaa, A.L.; Kivisto, A.T.; Leskinen, P.I.; Karp, M.T. A novel biosensor for the detection of zearalenone family mycotoxins in milk. J. Microbiol. Methods 2010, 80, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Larou, E.; Yiakoumettis, I.; Kaltsas, G.; Petropoulos, A.; Skandamis, P.; Kintzios, S. High throughput cellular biosensor for the ultra-sensitive, ultra-rapid detection of aflatoxin M1. Food Control 2013, 29, 208–212. [Google Scholar] [CrossRef]
- Ellington, A.D.; Szostak, J.W. In vitro selection of rna molecules that bind specific ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef] [PubMed]
- Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: Rna ligands to bacteriophage t4 DNA polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Jayasena, S.D. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Clin. Chem. 1999, 45, 1628–1650. [Google Scholar] [PubMed]
- Nguyen, B.H.; Tran, L.D.; Do, Q.P.; Nguyen, H.L.; Tran, N.H.; Nguyen, P.X. Label-free detection of aflatoxin M1 with electrochemical Fe3O4/polyaniline-based aptasensor. Mater. Sci. Eng. C 2013, 33, 2229–2234. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, S.; Pandey, A.K.; Rajput, Y.S.; Sharma, R. Selection of aptamers for aflatoxin M1 and their characterization. J. Mol. Recognit. 2014, 27, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Istamboulie, G.; Paniel, N.; Zara, L.; Granados, L.R.; Barthelmebs, L.; Noguer, T. Development of an impedimetric aptasensor for the determination of aflatoxin M1 in milk. Talanta 2016, 146, 464–469. [Google Scholar] [CrossRef] [PubMed]
- Szalontai, H.; Kiss, A.; Adanyi, N. Determination of aflatoxin M1 in milk samples by an owls-based immunosensor. Acta Aliment. 2014, 43, 148–155. [Google Scholar] [CrossRef]
- Lou, X.; Zhu, A.; Wang, H.; Wu, J.; Zhou, L.; Long, F. Direct and ultrasensitive optofluidic-based immunosensing assay of aflatoxin M1 in dairy products using organic solvent extraction. Anal. Chim. Acta 2016, 940, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, P.; Hu, X.; Zhang, Q.; Ding, X.; Zhang, W. Microarray technology for major chemical contaminants analysis in food: Current status and prospects. Sensors 2012, 12, 9234–9252. [Google Scholar] [CrossRef] [PubMed]
System | Vascular | Digestive | Respiratory | Nervous | Skin | Reproductive and Excretory |
---|---|---|---|---|---|---|
Symptoms/Effects | Increased fragility of blood vessels | Vomiting Intestinal hemorrhage | Shortness of breath | Tremor/Lack of coordination | Irritation | Infertility |
Internal hemorrhage to mucous and lungs | Liver necrosis | Bleeding of lungs | Depression | Burning sensation | Nephrotoxicity | |
Mucous membrane destruction | Headache | Photosensitivity |
Mycotoxin | Fungal Source | Group of Toxicity [25] | Contaminated Food | US-FDA MLs [26] (µg/kg) | EU-EFSA MLs [24] (µg/kg) |
---|---|---|---|---|---|
Aflatoxins (B1, B2, G1, G2) | Aspergillus flavus Aspergillus parasiticus | 1 | Wheat, maize, rice, peanut, pistachio, almond, hazelnut, ground nuts, tree nuts, figs, cottonseed | 20 | 4–10 for total 2–5 for B1 0.1 for B1 in baby food |
Aflatoxin M1 | Metabolite of aflatoxin B1 | 2B | Milk and dairy products | 0.5 | 0.05 0.025 baby milk |
Fumonisin B1, B2, B3 | Fusarium verticillionides Fusarium proliferatum | 2B | Maize, asparagus, corn-based food, white and yellow popcorn, sweet corn | 2000–4000 | 800–1000 200 baby food |
Ochratoxin A | Aspergillus ochraceus Penicillium verrucosum Aspergillus carbonarius | 2B | Cereals, coffee, cocoa, wine, beer, dried fruits, grapes, pig kidney | Not set | 3–10 0.5 baby food |
Patulin | Penicillium expansum | 3 | Maize, asparagus, apple, pears, grapes, vegetables, cereals and cheese. | 50 | 25–50 10 baby food |
Zearalenone | Fusarium graminearum Fusarium culmorum | 2A | Wheat, corn, barley, oats, sorghum and sesame seeds, hay and corn silage. | Not set | 50–100 20 baby food |
Deoxynivalenol | Fusarium graminearum Fusarium culmorum | 3 | Corn, wheat, oats, barley, rice, grains, beer, animal’s kidney and liver, milk, eggs | 1000 | 750–1250 200 baby food |
Nivalenol | Fusarium graminearum Fusarium culmorum | 3 | Oats, barley, maize, wheat, bread and fine bakery wares, pasta, cereals | Not set | 1.2 |
T-2 toxin | Fusarium sporotrichioides | 3 | Maize, wheat, corn gluten feed, corn gluten meal, barley, bran. | Not set | 0.012–0.043 |
No. | Quantification Method/Detector | Detection Limit/Sample (ppt) | Observations | References |
---|---|---|---|---|
1 | Thin Layer Chromatography with Fluorescence Detector (TLC-FD) | 100 (non-fat powdered milk) 5 (milk) 100 (beef liver) 12.5 (milk and milk products) 1–15 (cheese) | Clean up: Silica-gel/Reversed C18 column SPE | [76,77,78,79,80] |
2 | High Performance Liquid Chromatography with Fluorescence Detector (HPLC-FD) | 5–35 (raw milk) 0.01–5 (cheese) 600 (white and blue cheese) | Reversed C18 gravity column C18/IAC clean-up | [81,82,83,84,85] |
3 | High Performance Liquid Chromatography with Mass Spectrometry (HPLC-MS/MS) | 50 (milk) 0.59 (whole milk) 0.66 (low fat milk) | SPE-IAC clean-up | [5,58] |
4 | Liquid Chromatography with Fluorescence Detector (LC-FD) | 0.3 (dairy products) 0.8 (human breast milk) | Immunoaffinity column (IAC) | [86] |
5 | Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) | 4 (bovine milk) 0.83 (powder milk) | Solid phase extraction (SPE) | [87,88] |
6 | Ultra High Performance Liquid Chromatography Electrospray Ionisation Tandem Mass Spectrometry (UHPL-ESI/MS) | 1 (powder milk) 2 (liquid milk) | SPE | [89] |
7 | Enzyme-Linked Immunosorbent Assay/High Performance Liquid Chromatography-fluorescence Detector (ELISA/HPLC-FD) | 0–13.58 (ELISA in human breast milk) 13.58 (HPLC) >50 (ELISA) 2 (HPLC in milk) 4–31/50 (buffalo and cow milk) | IAC | [52,64,90] |
8 | Enzyme-Linked Immunosorbent Assay/High Performance Liquid Chromatography-Liquid Chromatography Tandem Mass Spectrometry (ELISA/HPLC-LC-MS) | 1.3–6.22 (ELISA) 62.9 (LC-MS in raw and UHT milk) | IAC | [91] |
9 | Enzyme-Linked Immunosorbent Assay (ELISA) | 70.6–770.97 (cheese) | AFM1-HRP | [92,93] |
10 | Electro chemiluminescent-immunoassay | 0.3 (milk) | antibody-labeled cadmium telluride quantum dots (CdTe QDs) | |
11 | Time-resolved fluoro-immunoassay (TRFIA) | 0.188 (milk) | AFM1-BSA conjugate, anti-AFM1 Ab, and Eu-labeled goat anti-rabbit Ab | [94] |
12 | Sequential injection immunoassay test (SIIA) | 200 (milk) | [95] | |
13 | Electrochemical sensing with bilayer lipid membranes (ECS-BLMs) | 761 (skimmed milk) | Electrochemical detection | [96] |
14 | ELISA-SPE (screen-printed electrodes) | 25 (milk) | Electrochemical detection | [97] |
15 | Flow-injection immunoassay | 11 (raw milk) | Amperometric detection | [98] |
16 | Direct chemiluminescent enzyme immunoassay | 1 (milk) | Sensitivity improved by using 3-(10′-phenothiazinyl)-propane-1-sulfonate and 4-morpholinopyridine | [99] |
17 | Immunochip | 240 (added in drinking water) | indirect competitive immunoassay | [100] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gurban, A.-M.; Epure, P.; Oancea, F.; Doni, M. Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M1 Detection in Milk and Dairy Products. Sensors 2017, 17, 2951. https://doi.org/10.3390/s17122951
Gurban A-M, Epure P, Oancea F, Doni M. Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M1 Detection in Milk and Dairy Products. Sensors. 2017; 17(12):2951. https://doi.org/10.3390/s17122951
Chicago/Turabian StyleGurban, Ana-Maria, Petru Epure, Florin Oancea, and Mihaela Doni. 2017. "Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M1 Detection in Milk and Dairy Products" Sensors 17, no. 12: 2951. https://doi.org/10.3390/s17122951
APA StyleGurban, A.-M., Epure, P., Oancea, F., & Doni, M. (2017). Achievements and Prospects in Electrochemical-Based Biosensing Platforms for Aflatoxin M1 Detection in Milk and Dairy Products. Sensors, 17(12), 2951. https://doi.org/10.3390/s17122951