A Simple, Low-Cost Micro-Coating Method for Accuracy Improvement and Its Application in Pressure Sensors
Abstract
:1. Introduction
- (1)
- Good blocking and isolation capabilities from influential media in the external environment.
- (2)
- Deposition of densified pinhole-free coating to the surface of the pressure sensor to avoid errors caused by loosening between the surface of the device and the surface of the coating.
- (3)
- The lightweight and soft structures are desirable, because a heavy coating will directly affect the flexibility of the movable structure of the pressure sensor. Thus, a lightweight coating material with small Young’s modulus is necessary. Besides, the lightweight coating can fill and make up for defects, such as surface clearance.
2. Materials and Methods
2.1. The Specific Steps of the Post-Processing Method
2.2. Characterization of the Micro-Coating Film
2.3. The Method to Test the Pressure Sensor
- (1)
- Determine the characteristic equation of the linear sensor. By using the least-squares calculation and the characteristic equation of the linear sensor was obtained. Then the intercept was calculated by utilizing the intercept function in MS Excel software, the slope was calculated by using the slope function , where is the pressure input value of the measuring point of i, and is the signal output value of the measuring point i of the sensor.
- (2)
- Determine the output value of full-scale : was calculated by using the least-squares method, where is the least-squares method to calculate the maximum range output, measures the upper limit pressure value, and measures the lower limit pressure value.
- (3)
- To calculate the accuracy value of the sensor, , where is the average of the output of the samples in the entire measuring range.
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, W.; Emaminejad, S.; Hyy, N.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chorsi, M.T.; Curry, E.J.; Chorsi, H.T.; Das, R.; Baroody, J.; Purohit, P.K.; Ilies, H.; Nguyen, T.D. Piezoelectric biomaterials for sensors and actuators. Adv. Mater. 2019, 31, 1802084. [Google Scholar] [CrossRef]
- Natiely, H.S.; Daniela, D.A.; Francisco, R.C.; Noé, V.V.O.; Wilfrido, C.A. Design and simulation of an integrated wireless capacitive sensors array for measuring ventricular pressure. Sensors 2018, 18, 2781. [Google Scholar]
- Umay, I.; Fidan, B.; Barshan, B. Localization and tracking of implantable biomedic sensors. Sensors 2017, 17, 583. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, J.K.; Patil, S.J.; Park, J.K.; Park, S.; Lee, D.W. A wireless pressure senor integrated with a biodegradable polymer stent for biomedical applications. Sensors 2016, 16, 809. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Lee, Y.; Wang, J.; Foo, Z.; Kim, Y.; Jung, W.; Li, Z.; Blaauw, D.; Sylvester, D. A dual-slope capacitance-to-digital converter integrated in an implantable pressure-sensing system. IEEE J. Solid St. Circ. 2015, 50, 1581–1591. [Google Scholar] [CrossRef]
- Araci, I.E.; Su, B.; Quake, S.R.; Mandel, Y. An implantable microfluidic device for self- monitoring of intraocular pressure. Nat. Med. 2014, 20, 1074–1078. [Google Scholar] [CrossRef]
- Lee, J.O.; Park, H.; Du, J.; Balakrishna, A.; Chen, O.; Sretavan, D.; Choo, H. A microscale optical implant for continuous in vivo monitoring of intraocular pressure. Microsyst. Nanoeng. 2017, 3, 17057. [Google Scholar] [CrossRef] [Green Version]
- Han, S.J.; Park, H.; Lee, J.O.; Choo, H. Effect of optical aberrations on intraocular pressure measurements using a microscale optical implant in ex vivo rabbit eyes. J. Biomed. Opt. 2018, 23, 047002. [Google Scholar]
- Yu, L.; Kim, B.J.; Meng, E. Chronically implanted pressure sensors: Challenges and state of the field. Sensors 2014, 14, 20620. [Google Scholar] [CrossRef]
- Parish, T.R.; Leon, D. Measurement of cloud perturbation pressures using an instrumented aircraft. J. Atmos. Ocean. Technol. 2013, 30, 215–229. [Google Scholar] [CrossRef]
- Engel, J.; Sturm, J.; Cremers, D. Scale-aware navigation of a low-cost quadrocopter with a monocular camera. Robot. Auton. Syst. 2014, 62, 1646–1656. [Google Scholar] [CrossRef] [Green Version]
- Rodi, A.R.; Leon, D.C. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements. Atmos. Meas. Tech. 2012, 5, 2569–2579. [Google Scholar] [CrossRef] [Green Version]
- Guodong, L.; Yuehe, L. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal. Chem. 2005, 77, 5894–5901. [Google Scholar]
- Xian, H.; Liu, Y.; Cheng, H.; Shin, W.J.; Fan, J.A.; Liu, Z.; Lu, C.J.; Kong, G.W.; Chen, K.; Patnaik, D. Biomedical sensors: Materials and designs for wireless epidermal sensors of hydration and strain. Adv. Funct. Mater. 2014, 24, 3846–3854. [Google Scholar]
- Ripka, P. Advances in fluxgate sensors. Sens. Actuators A Phys. 2003, 106, 8–14. [Google Scholar] [CrossRef]
- Huang, Y.G.; Li, X.H.; Chen, P.F. Calibration method for line-structured light multi-vision sensor based on combined _target. Eurasip J. Wirel. Comm. 2013, 2013, 92. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Zhao, K.; Zhang, Q.; Wang, T. Construction and performance test of a novel polarization sensor for navigation. Sens. Actuators A Phys. 2008, 148, 75–82. [Google Scholar] [CrossRef]
- Trench Etched Resonant Pressure Sensor: TERPS. Available online: https://www.industrial.ai/sites/g/files/cozyhq596/files/2018-07/terps_white_paper_english_0.pdf (accessed on 1 April 2019).
- Xu, J.; Pickrell, G.; Wang, X.; Wei, P.; Cooper, K. A novel temperature-insensitive optical fiber pressure sensor for harsh environments. IEEE Photonic Technol. Lett. 2005, 17, 870–872. [Google Scholar]
- French, P.; Krijnen, G.; Roozeboom, F. Precision in harsh environments. Microsyst. Nanoeng. 2016, 2, 16048. [Google Scholar] [CrossRef]
- Kumar, S.S.; Pant, B.D. Erratum to: Design principles and considerations for the ‘ideal’ silicon piezoresistive pressure sensor: A focused review. Microsyst. Technol. 2014, 20, 2303. [Google Scholar] [CrossRef]
- Elena, S.; Giorgio, D.; Paolo, C.; Yun-Hi, K.; Mario, C. Low-voltage, printed, all-polymer integrated circuits employing a low-leakage and high-yield polymer dielectric. Adv. Electron. Mater. 2018, 4, 1800340. [Google Scholar]
- Christina, H.; Metzen, R.P.V.; Patrick, R.; Thomas, S. Characterization of parylene C as an encapsulation material for implanted neural prostheses. J. Biomed. Mater. Res. 2010, 93, 266–274. [Google Scholar]
- Staufert, S.; Gutzwiller, P.; Mushtaq, F.; Hierold, C. Surface Nanostructuring of Ti6Al4 V Surfaces for Parylene-C Coatings with Ultradurable Adhesion. ACS Appl. Nano Mater. 2018, 1, 1586–1594. [Google Scholar] [CrossRef]
- Derylo, M.A.; Morton, K.C.; Baker, L.A. Parylene insulated probes for scanning electrochemical-atomic force microscopy. Langmuir 2011, 27, 13925–13930. [Google Scholar] [CrossRef]
- International Organization for Standardization. International Vocabulary of Basic and General Terms in Metrology (VIM). The Bureau of Standardization and Metrology Press: Kathmandu, Nepal, 1998; ISBN 9989-868-00-X. [Google Scholar]
- Liu, S.S.; Zhang, B.W. Development of a Capacitive Pressure Sensor Based on Havar Alloy Diaphragm (IFMEITA 2017); Atlantis Press: ShenZhen, China, 2017; pp. 486–491. [Google Scholar]
- Rollinger, B.; Mansour, M.; Abhari, R.S. High temperature fast response pressure probe for use in liquid metal droplet dispensers. Rev. Sci. Instrum. 2012, 83, 533. [Google Scholar] [CrossRef]
- Ni, S.S. Research the precision of the Intelligent Pressure Sensor. Master’s Thesis, Donghua University, Shanghai, China, 1 January 2016. [Google Scholar]
- Ju, H.E.; Ming-Zhou, L.U.; Wang, Z.; Kong-Fa, H.U.; She, K.K. Design of high-precision weighing sensor node in traceability system of traditional Chinese medicinal materials. Transducer Microsyst. Technol. 2015. [Google Scholar] [CrossRef]
- Betti, S.; Ciuti, G.; Ricotti, L.; Ghionzoli, M.; Cavallo, F.; Messineo, A.; Menciassi, A. A sensorized nuss bar for patient-specific treatment of pectus excavatum. Sensors 2014, 14, 18096–18113. [Google Scholar] [CrossRef]
- Tan, E.L.; Pereles, B.D.; Horton, B.; Shao, R.; Zourob, M.; Ong, K.G. Implantable biosensors for real-time strain and pressure monitoring. Sensors 2008, 8, 6396–6406. [Google Scholar] [CrossRef]
- Costa, J.C.; Wishahi, A.; Pouryazdan, A.; Nock, M.; Münzenrieder, N. Hand-drawn resistors, capacitors, diodes, and circuits for a pressure sensor system on paper. Adv. Electron. Mater. 2018, 4, 1700600. [Google Scholar] [CrossRef]
- Shaikh, S.F.; Mazo-Mantilla, H.F.; Qaiser, N.; Khan, S.M.; Nassar, J.M.; Geraldi, N.R.; Duarte, C.M.; Hussain, M.M. Noninvasive featherlight wearable compliant marine skin: Standalone multisensory system for deep-sea environmental monitoring. Small 2019, 15, 1804385. [Google Scholar] [CrossRef] [PubMed]
Device Number | Accuracy Before Processing (mmHg) | Accuracy After Processing (mmHg) | Change Rate of Accuracy |
---|---|---|---|
1 | 0.063948 | 0.038288 | −0.401264 |
2 | 0.067927 | 0.018481 | −0.727925 |
3 | 0.069682 | 0.035841 | −0.485652 |
4 | 0.071272 | 0.026932 | −0.622122 |
5 | 0.083141 | 0.030785 | −0.629732 |
6 | 0.095768 | 0.035051 | −0.634001 |
7 | 0.202403 | 0.059648 | −0.705302 |
Average | 0.093449 | 0.035004 | −0.625424 |
Device Number | Sensitivity Before Processing (mV/mmHg) | Sensitivity After Processing (mV/mmHg) | Change Rate of Sensitivity △ki |
---|---|---|---|
1 | 0.267143333 | 0.264535952 | −0.009760232 |
2 | 0.224944048 | 0.221267619 | −0.016343749 |
3 | 0.227907143 | 0.231348333 | 0.015099088 |
4 | 0.251315952 | 0.249302381 | −0.00801211 |
5 | 0.244220714 | 0.241308571 | −0.011924226 |
6 | 0.236820714 | 0.231635952 | −0.021893195 |
7 | 0.245490714 | 0.242974048 | −0.010251573 |
△k | −0.009012285 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, J.-L.; Chen, Y.-X.; Qiang, W.-J.; Wang, X.-Z.; Wei, H.; Gao, B.-H.; Yang, X. A Simple, Low-Cost Micro-Coating Method for Accuracy Improvement and Its Application in Pressure Sensors. Sensors 2019, 19, 4601. https://doi.org/10.3390/s19204601
Yao J-L, Chen Y-X, Qiang W-J, Wang X-Z, Wei H, Gao B-H, Yang X. A Simple, Low-Cost Micro-Coating Method for Accuracy Improvement and Its Application in Pressure Sensors. Sensors. 2019; 19(20):4601. https://doi.org/10.3390/s19204601
Chicago/Turabian StyleYao, Jia-Lin, Yu-Xuan Chen, Wen-Jiang Qiang, Xi-Zi Wang, Hao Wei, Bo-Hang Gao, and Xing Yang. 2019. "A Simple, Low-Cost Micro-Coating Method for Accuracy Improvement and Its Application in Pressure Sensors" Sensors 19, no. 20: 4601. https://doi.org/10.3390/s19204601
APA StyleYao, J.-L., Chen, Y.-X., Qiang, W.-J., Wang, X.-Z., Wei, H., Gao, B.-H., & Yang, X. (2019). A Simple, Low-Cost Micro-Coating Method for Accuracy Improvement and Its Application in Pressure Sensors. Sensors, 19(20), 4601. https://doi.org/10.3390/s19204601