Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors
Abstract
:1. Introduction
2. Heme Peroxidases and Their Mimics
2.1. Biochemistry of Heme Peroxidases
2.2. Peroxidase Reactions in Electrochemical Biosensors
2.3. Engineering of Heme Peroxidase Mimics
3. Peroxidase Reactions on Semiconductors for Electrochemical Biosensing
3.1. Semiconductors as Electrode Materials for Biosensors
3.2. Biosensors with Natural Heme Peroxidases
3.3. Heme-Peptide Complexes
3.4. Hemin and Other Fe-Porphyrins
4. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hermanson, G.T. Bioconjugate Techniques, 2nd ed.; Academic Press: Cambridge, MA, USA, 2008; ISBN 9780123705013. [Google Scholar]
- Ruzgas, T.; Csöregi, E.; Emnéus, J.; Gorton, L.; Marko-Varga, G. Peroxidase-modified electrodes: Fundamentals and application. Anal. Chim. Acta 1996, 330, 123–138. [Google Scholar] [CrossRef]
- Ortega, F.; Domínguez, E.; Burestedt, E.; Emnéus, J.; Gorton, L.; Marko-Varga, G. Phenol oxidase-based biosensors as selective detection units in column liquid chromatography for the determination of phenolic compounds. J. Chromatogr. A 1994, 675, 65–78. [Google Scholar] [CrossRef]
- Rosatto, S.S.; Kubota, L.T.; De Oliveira Neto, G. Biosensor for phenol based on the direct electron transfer blocking of peroxidase immobilising on silica-titanium. Anal. Chim. Acta 1999, 390, 65–72. [Google Scholar] [CrossRef]
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen peroxide poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Cai, S.; Ren, Q.Q.; Wen, W.; Zhao, Y.D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Ekanayake, E.M.I.M.; Preethichandra, D.M.G.; Kaneto, K. Bi-functional amperometric biosensor for low concentration hydrogen peroxide measurements using polypyrrole immobilizing matrix. Sens. Actuators B Chem. 2008, 132, 166–171. [Google Scholar] [CrossRef]
- Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen peroxide sensing and signaling. Mol. Cell 2007, 26, 1–14. [Google Scholar] [CrossRef]
- Halliwell, B.; Clement, M.V.; Long, L.H. Hydrogen peroxide in the human body. FEBS Lett. 2000, 486, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Schuhmann, W. Amperometric enzyme biosensors based on optimised electron-transfer pathways and non-manual immobilisation procedures. Rev. Mol. Biotechnol. 2002, 82, 425–441. [Google Scholar] [CrossRef]
- Presnova, G.V.; Rybcova, M.Y.; Egorov, A.M. Electrochemical biosensors based on horseradish peroxidase. Russ. J. Gen. Chem. 2008, 78, 2482–2488. [Google Scholar] [CrossRef]
- Wollenberger, U.; Spricigo, R.; Leimkühler, S.; Schröder, K. Protein electrodes with direct electrochemical communication. In Advances in Biochemical Engineering/Biotechnology; Springer: Berlin/Heidelberg, Germany, 2007; Volume 109, pp. 19–64. ISBN 9783540752004. [Google Scholar]
- Foulds, N.C.; Lowe, C.R. Enzyme entrapment in electrically conducting polymers. Immobilisation of glucose oxidase in polypyrrole and its application in amperometric glucose sensors. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1986, 82, 1259–1264. [Google Scholar] [CrossRef]
- Tatsuma, T.; Watanabe, T.; Okawa, Y. Enzyme monolayer- and bilayer-modified tin oxide electrodes for the determination of hydrogen peroxide and glucose. Anal. Chem. 1989, 61, 2352–2355. [Google Scholar] [CrossRef]
- Ramanavicius, A.; Habermuller, K.; Csöregi, E.; Laurinavicius, V.; Schuhmann, W. Polypyrrole-entrapped quinohemoprotein alcohol dehydrogenase. Evidence for direct electron transfer via conducting-polymer chains. Anal. Chem. 1999, 71, 3581–3586. [Google Scholar] [CrossRef]
- Trashin, S.A.; Haltrich, D.; Ludwig, R.; Gorton, L.; Karyakin, A.A. Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification. Bioelectrochemistry 2009, 76, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Yoshioka, K.; Kato, D.; Kamata, T.; Niwa, O. Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration. Anal. Chem. 2013, 85, 9996–9999. [Google Scholar] [CrossRef] [PubMed]
- Frasca, S.; Molero Milan, A.; Guiet, A.; Goebel, C.; Pérez-Caballero, F.; Stiba, K.; Leimkühler, S.; Fischer, A.; Wollenberger, U. Bioelectrocatalysis at mesoporous antimony doped tin oxide electrodes—Electrochemical characterization and direct enzyme communication. Electrochim. Acta 2013, 110, 172–180. [Google Scholar] [CrossRef]
- Kazmerski, L.L. Photovoltaics: A review of cell and module technologies. Renew. Sustain. Energy Rev. 1997, 1, 71–170. [Google Scholar] [CrossRef]
- Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338–344. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X.; Willner, I. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications. Adv. Mater. 2013, 25, 349–377. [Google Scholar] [CrossRef]
- Dunford, H.B. Heme Peroxidases; John Wiley and Sons: New York, NY, USA, 1999; ISBN 0471242446. [Google Scholar]
- Battistuzzi, G.; Bellei, M.; Bortolotti, C.A.; Sola, M. Redox properties of heme peroxidases. Arch. Biochem. Biophys. 2010, 500, 21–36. [Google Scholar] [CrossRef]
- Zámocký, M.; Hofbauer, S.; Schaffner, I.; Gasselhuber, B.; Nicolussi, A.; Soudi, M.; Pirker, K.F.; Furtmüller, P.G.; Obinger, C. Independent evolution of four heme peroxidase superfamilies. Arch. Biochem. Biophys. 2015, 574, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, B.; Wang, Z.; Xu, Q.; Wang, Q.; Dong, S. Sol-gel thin-film immobilized soybean peroxidase biosensor for the amperometric determination of hydrogen peroxide in acid medium. Anal. Chem. 1999, 71, 1935–1939. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, B.; Cheng, G.; Dong, S. Acid-stable amperometric soybean peroxidase biosensor based on a self-gelatinizable grafting copolymer of polyvinyl alcohol and 4-vinylpyridine. Electroanalysis 2001, 13, 555–558. [Google Scholar] [CrossRef]
- Calza, P.; Avetta, P.; Rubulotta, G.; Sangermano, M.; Laurenti, E. TiO2-soybean peroxidase composite materials as a new photocatalytic system. Chem. Eng. J. 2014, 239, 87–92. [Google Scholar] [CrossRef]
- Munteanu, F.D.; Lindgren, A.; Emnéus, J.; Gorton, L.; Ruzgas, T.; Csöregi, E.; Ciucu, A.; Van Huystee, R.B.; Gazaryan, I.G.; Lagrimini, L.M. Bioelectrochemical monitoring of phenols and aromatic amines in flow injection using novel plant peroxidases. Anal. Chem. 1998, 70, 2596–2600. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Medici, L.; Tessema, M.; Poloznikov, A.A.; Hushpulian, D.M.; Tishkov, V.I.; Andreu, R.; Leech, D.; Megersa, N.; Marcaccio, M.; et al. Highly sensitive, stable and selective hydrogen peroxide amperometric biosensors based on peroxidases from different sources wired by Os-polymer: A comparative study. Solid State Ion. 2018, 314, 178–186. [Google Scholar] [CrossRef]
- Gazaryan, I.G.; Gorton, L.; Ruzgas, T.; Csoregi, E.; Schuhmann, W.; Lagrimini, L.M.; Khushpul’yan, D.M.; Tishkov, V.I. Tobacco peroxidase as a new reagent for amperometric biosensors. J. Anal. Chem. 2005, 60, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Lindgren, A.; Ruzgas, T.; Gorton, L.; Csöregi, E.; Bautista Ardila, G.; Sakharov, I.Y.; Gazaryan, I.G. Biosensors based on novel peroxidases with improved properties in direct and mediated electron transfer. Biosens. Bioelectron. 2000, 15, 491–497. [Google Scholar] [CrossRef]
- Veitch, N.C. Horseradish peroxidase: A modern view of a classic enzyme. Phytochemistry 2004, 65, 249–259. [Google Scholar] [CrossRef]
- Gajhede, M.; Schuller, D.J.; Henriksen, A.; Smith, A.T.; Poulos, T.L. Crystal structure of horseradish peroxidase c at 2.15 å resolution. Nat. Struct. Biol. 1997, 4, 1032–1038. [Google Scholar] [CrossRef]
- Rodríguez-López, J.N.; Lowe, D.J.; Hernandez-Ruiz, J.; Hiner, A.N.P.; Garcia-Canovas, F.; Thorneley, R.N.F. Mechanism of Reaction of Hydrogen Peroxide with Horseradish Peroxidase: Identification of Intermediates in the Catalytic Cycle. J. Am. Chem. Soc. 2001, 123, 11838–11847. [Google Scholar] [CrossRef] [PubMed]
- Dunford, B.H. How do enzymes work? Effect of electron circuits on transition state acid dissociation constants. J. Biol. Inorg. Chem. 2001, 6, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, Y.; Yamazaki, I. The oxidation-reduction potentials of compound I/compound II and compound II/ferric couples of horseradish peroxidases A2 and C. J. Biol. Chem. 1979, 254, 9101–9106. [Google Scholar] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Neumann, B. Bioelectrocatalytic Activity of Surface-Confined Heme Catalysts: From Natural Enzymes to Synthetic Analogs. Ph.D. Thesis, University Potsdam, Potsdam, Brandenburg, Germany, 2019. [Google Scholar]
- Robinson, S.R.; Dang, T.N.; Dringen, R.; Bishop, G.M. Hemin toxicity: A preventable source of brain damage following hemorrhagic stroke. Redox Rep. 2009, 14, 228–235. [Google Scholar] [CrossRef]
- Sadeghi, S.J.; Gilardi, G.; Cass, A.E.G. Mediated electrochemistry of peroxidases - Effects of variations in protein and mediator structures. Biosens. Bioelectron. 1997, 12, 1191–1198. [Google Scholar] [CrossRef]
- Ferapontova, E.E.; Grigorenko, V.G.; Egorov, A.M.; Börchers, T.; Ruzgas, T.; Gorton, L. Direct electron transfer in the system gold electrode-recombinant horseradish peroxidases. J. Electroanal. Chem. 2001, 509, 19–26. [Google Scholar] [CrossRef]
- Ferapontova, E.; Schmengler, K.; Börchers, T.; Ruzgas, T.; Gorton, L. Effect of cysteine mutations on direct electron transfer of horseradish peroxidase on gold. Biosens. Bioelectron. 2002, 17, 953–963. [Google Scholar] [CrossRef]
- Presnova, G.; Grigorenko, V.; Egorov, A.; Ruzgas, T.; Lindgren, A.; Gorton, L.; Börchers, T. Direct heterogeneous electron transfer of recombinant horseradish peroxidases on gold. Faraday Discuss. 2000, 116, 281–289. [Google Scholar] [CrossRef]
- Lötzbeyer, T.; Schuhmann, W.; Schmidt, H.-L. Minizymes. A new strategy for the development of reagentless amperometric biosensors based on direct electron-transfer processes. Bioelectrochem. Bioenerg. 1997, 42, 1–6. [Google Scholar] [CrossRef]
- Younathan, J.N.; Wood, K.S.; Meyer, T.J. Electrocatalytic reduction of nitrite and nitrosyl by iron(III) protoporphyrin IX dimethyl ester immobilized in an electropolymerized film. Inorg. Chem. 1992, 31, 3280–3285. [Google Scholar] [CrossRef]
- Bedioui, F.; Trevin, S.; Albin, V.; Guadalupe, M.; Villegas, G. Design and characterization of chemically modified electrodes with iron (III) porphyrinic-based polymers: Study of their reactivity toward nitrites and nitric oxide in aqueous solution. Anal. Chim. Acta 1997, 341, 177–185. [Google Scholar] [CrossRef]
- Schäferling, M.; Bäuerle, P. Porphyrin-functionalized oligo- and polythiophenes. J. Mater. Chem. 2004, 14, 1132–1141. [Google Scholar] [CrossRef]
- Yuasa, M.; Oyaizu, K.; Yamaguchi, A.; Ishikawa, M.; Eguchi, K.; Kobayashi, T.; Toyoda, Y.; Tsutsui, S. Electrochemical sensor for superoxide anion radical using polymeric iron porphyrin complexes containing axial 1-methylimidazole ligand as cytochrome c mimics. Polym. Adv. Technol. 2005, 16, 287–292. [Google Scholar] [CrossRef]
- Chng, L.L.; Chang, C.J.; Nocera, D.G. Catalytic O-O activation chemistry mediated by iron hangman porphyrins with a wide range of proton-donating abilities. Org. Lett. 2003, 5, 2421–2424. [Google Scholar] [CrossRef]
- Di Costanzo, L.; Geremia, S.; Randaccio, L.; Nastri, F.; Maglio, O.; Lombardi, A.; Pavone, V. Miniaturized heme proteins: Crystal structure of Co(III)-mimochrome IV. J. Biol. Inorg. Chem. 2004, 9, 1017–1027. [Google Scholar] [CrossRef]
- Kosman, J.; Juskowiak, B. Peroxidase-mimicking DNAzymes for biosensing applications: A review. Anal. Chim. Acta 2011, 707, 7–17. [Google Scholar] [CrossRef]
- Ricoux, R.; Sauriat-Dorizon, H.; Girgenti, E.; Blanchard, D.; Mahy, J.P. Hemoabzymes: Towards new biocatalysts for selective oxidations. J. Immunol. Methods 2002, 269, 39–57. [Google Scholar] [CrossRef]
- Atamna, H.; Boyle, K. Amyloid-beta peptide binds with heme to form a peroxidase: relationship to the cytopathologies of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2006, 103, 3381–3386. [Google Scholar] [CrossRef] [Green Version]
- Neumann, B.; Yarman, A.; Wollenberger, U.; Scheller, F. Characterization of the enhanced peroxidatic activity of amyloid β peptide-hemin complexes towards neurotransmitters. Anal. Bioanal. Chem. 2014, 406, 3359–3364. [Google Scholar] [CrossRef]
- Marques, H.M. Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans. 2007, 9226, 4371–4385. [Google Scholar] [CrossRef]
- Tanabe, J.; Nakano, K.; Hirata, R.; Himeno, T.; Ishimatsu, R.; Imato, T.; Okabe, H.; Matsuda, N. Totally synthetic microperoxidase-11. R. Soc. Open Sci. 2018, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarman, A.; Badalyan, A.; Gajovic-Eichelmann, N.; Wollenberger, U.; Scheller, F.W. Enzyme electrode for aromatic compounds exploiting the catalytic activities of microperoxidase-11. Biosens. Bioelectron. 2011, 30, 320–323. [Google Scholar] [CrossRef] [PubMed]
- Osman, A.M.; Koerts, J.; Boersma, M.G.; Boeren, S.; Veeger, C.; Rietjens, I.M. Microperoxidase/H2O2-catalyzed aromatic hydroxylation proceeds by a cytochrome-P-450-type oxygen-transfer reaction mechanism. Eur. J. Biochem. 1996, 240, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Nastri, F.; Lombardi, A.; Morelli, G.; Maglio, O.; D’Auria, G.; Pedone, C.; Pavone, V. Hemoprotein models based on a covalent helix-heme-helix sandwich: 1. design, synthesis, and characterization. Chem. A Eur. J. 1997, 3, 340–349. [Google Scholar] [CrossRef]
- Nastri, F.; Lista, L.; Ringhieri, P.; Vitale, R.; Faiella, M.; Andreozzi, C.; Travascio, P.; Maglio, O.; Lombardi, A.; Pavone, V. A heme-peptide metalloenzyme mimetic with natural peroxidase-like activity. Chemistry 2011, 17, 4444–4453. [Google Scholar] [CrossRef]
- Caserta, G.; Chino, M.; Firpo, V.; Zambrano, G.; Leone, L.; D’Alonzo, D.; Nastri, F.; Maglio, O.; Pavone, V.; Lombardi, A. Enhancement of peroxidase activity in artificial mimochrome VI catalysts through rational design. ChemBioChem 2018, 19, 1823–1826. [Google Scholar] [CrossRef]
- Vitale, R.; Lista, L.; Cerrone, C.; Caserta, G.; Chino, M.; Maglio, O.; Nastri, F.; Pavone, V.; Lombardi, A. An artificial heme-enzyme with enhanced catalytic activity: Evolution, functional screening and structural characterization. Org. Biomol. Chem. 2015, 13, 4859–4868. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent trends in potentiometric sensor arrays-A review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef]
- Kong, F.T.; Dai, S.Y.; Wang, K.J. Review of recent progress in dye-sensitized solar cells. Adv. Optoelectron. 2007, 2007, 75384. [Google Scholar] [CrossRef] [Green Version]
- Stadler, A. Transparent conducting oxides—An up-to-date overview. Materials 2012, 5, 661–683. [Google Scholar] [CrossRef] [PubMed]
- Renault, C.; Andrieux, C.P.; Tucker, R.T.; Brett, M.J.; Balland, V.; Limoges, B. Unraveling the mechanism of catalytic reduction of O2 by microperoxidase-11 adsorbed within a transparent 3D-nanoporous ITO film. J. Am. Chem. Soc. 2012, 134, 6834–6845. [Google Scholar] [CrossRef]
- Bachmeier, A.; Armstrong, F. Solar-driven proton and carbon dioxide reduction to fuels—Lessons from metalloenzymes. Curr. Opin. Chem. Biol. 2015, 25, 141–151. [Google Scholar] [CrossRef]
- Zucca, P.; Sanjust, E. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms. Molecules 2014, 19, 14139–14194. [Google Scholar] [CrossRef]
- Thissen, P.; Valtiner, M.; Grundmeier, G. Stability of phosphonic acid self-assembled monolayers on amorphous and single-crystalline aluminum oxide surfaces in aqueous solution. Langmuir 2010, 26, 156–164. [Google Scholar] [CrossRef]
- Chen, X.; Chockalingam, M.; Liu, G.; Luais, E.; Gui, A.L.; Gooding, J.J. A molecule with dual functionality 4-aminophenylmethylphosphonic acid: A comparison between layers formed on indium tin oxide by in situ generation of an aryl diazonium salt or by self-assembly of the phosphonic acid. Electroanalysis 2011, 23, 2633–2642. [Google Scholar] [CrossRef]
- Pinson, J.; Podvorica, F. Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem. Soc. Rev. 2005, 34, 429–439. [Google Scholar] [CrossRef]
- Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Wang, J. Sol-gel materials for electrochemical biosensors. Anal. Chim. Acta 1999, 399, 21–27. [Google Scholar] [CrossRef]
- Cosnier, S. Biomolecule immobilization on electrode surfaces by entrapment or attachment to electrochemically polymerized films. A review. Biosens. Bioelectron. 1999, 14, 443–456. [Google Scholar] [CrossRef]
- Livache, T.; Roget, A.; Dejean, E.; Barthet, C.; Bidan, G.; Teoule, R. Preparation of a DNA matrix via an electrqchemically directed copolymerization of pyrrole and oligonucleotides bearing a pyrrole group. Nucleic Acids Res. 1994, 22, 2915–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolowacz, S.E.; Yon Hin, B.F.Y.; Lowe, C.R. Covalent electropolymerization of glucose oxidase in polypyrrole. Anal. Chem. 1992, 64, 1541–1545. [Google Scholar] [CrossRef]
- Wu, S.; Lin, J.; Chan, S.I. Oxidation of dibenzothiophene catalyzed by heme-containing enzymes encapsulated in sol-gel glass—A new form of biocatalysts. Appl. Biochem. Biotechnol. 1994, 47, 11–20. [Google Scholar] [CrossRef]
- Li, J.; Wang, K.M.; Yang, X.H.; Xiao, D. Sol-gel horseradish peroxidase biosensor for the chemiluminescent flow determination of hydrogen peroxide. Anal. Commun. 1999, 36, 195–197. [Google Scholar] [CrossRef]
- Kumar, A.; Malhotra, R.; Malhotra, B.D.; Grover, S.K. Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol-gel film. Anal. Chim. Acta 2000, 414, 43–50. [Google Scholar] [CrossRef]
- Lloyd, C.R.; Eyring, E.M. Protecting heme enzyme peroxidase activity from H2O2 inactivation by sol-gel encapsulation. Langmuir 2000, 16, 9092–9094. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, J.; Jiang, D.; Kong, J.; Liu, B.; Deng, J. TiO2 sol-gel derived amperometric biosensor for H2O2 on the electropolymerized phenazine methosulfate modified electrode. Anal. Bioanal. Chem. 2002, 374, 1261–1266. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Zhou, Q.; Liu, L.; Yan, M.; Jiang, Z. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived tin oxide/gelatin composite films. J. Electroanal Chem. 2005, 580, 213–221. [Google Scholar] [CrossRef]
- Jia, N.Q.; Xu, J.; Sun, M.H.; Jiang, Z.Y. A mediatorless hydrogen peroxide biosensor based on horseradish peroxidase immobilized in tin oxide sol-gel film. Anal. Lett. 2005, 38, 1237–1248. [Google Scholar] [CrossRef]
- Lia, J.; Tana, S.N.; Geb, H. Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Anal. Chim. Acta 1996, 335, 137–145. [Google Scholar] [CrossRef]
- Li, J.; Tan, S.N.; Oh, J.T. Silica sol-gel immobilized amperometric enzyme electrode for peroxide determination in the organic phase. J. Electroanal. Chem. 1998, 448, 69–77. [Google Scholar] [CrossRef]
- Yu, J.; Ju, H. Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor deposition method. Anal. Chem. 2002, 74, 3579–3583. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Dong, S. Direct electrochemistry and electrocatalysis of horseradish peroxidase immobilized in sol-gel-derived ceramic-carbon nanotube nanocomposite film. Biosens. Bioelectron. 2007, 22, 1811–1815. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.L.; Yang, Y.H.; Yang, H.F.; Liu, Z.M.; Shen, G.L.; Yu, R.Q. Nanosized flower-like ZnO synthesized by a simple hydrothermal method and applied as matrix for horseradish peroxidase immobilization for electro-biosensing. J. Inorg. Biochem. 2005, 99, 2046–2053. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, C.; Chang, Y.; Wu, F.; Ding, S. Immobilization of horseradish peroxidase on zinc oxide nanorods grown directly on electrodes for hydrogen peroxide sensing. Monatshefte für Chemie Chem. Mon. 2014, 145, 107–112. [Google Scholar] [CrossRef]
- Lu, X.; Wen, Z.; Li, J. Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors. Biomaterials 2006, 27, 5740–5747. [Google Scholar] [CrossRef]
- Gong, J.-M.; Lin, X.-Q. Direct electrochemistry of horseradish peroxidase embedded in nano-Fe3O4 matrix on paraffin impregnated graphite electrode and its electrochemical catalysis for H2O2. Chin. J. Chem. 2010, 21, 761–766. [Google Scholar] [CrossRef]
- Chen, W.; Weng, W.; Yin, C.; Niu, X.; Li, G.; Xie, H.; Liu, J.; Sun, W. Fabrication of an electrochemical biosensor based on Nafion/horseradish peroxidase/Co3O4 NP/CILE and its electrocatalysis. Int. J. Electrochem. Sci. 2018, 13, 4741–4752. [Google Scholar]
- Zhang, Y.; He, P.; Hu, N. Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: Direct electrochemistry and bioelectrocatalysis. Electrochim. Acta 2004, 49, 1981–1988. [Google Scholar] [CrossRef]
- Wu, F.; Xu, J.; Tian, Y.; Hu, Z.; Wang, L.; Xian, Y.; Jin, L. Direct electrochemistry of horseradish peroxidase on TiO2 nanotube arrays via seeded-growth synthesis. Biosens. Bioelectron. 2008, 24, 198–203. [Google Scholar] [CrossRef]
- Liu, S.; Chen, A. Coadsorption of horseradish peroxidase with thionine on TiO2 nanotubes for biosensing. Langmuir 2005, 21, 8409–8413. [Google Scholar] [CrossRef]
- Xiao, P.; Garcia, B.B.; Guo, Q.; Liu, D.; Cao, G. TiO2 nanotube arrays fabricated by anodization in different electrolytes for biosensing. Electrochem. commun. 2007, 9, 2441–2447. [Google Scholar] [CrossRef]
- Kafi, A.K.M.; Wu, G.; Chen, A. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 2008, 24, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Deva Kumar, E.T.; Ganesh, V. Immobilization of horseradish peroxidase enzyme on nanoporous titanium dioxide electrodes and its structural and electrochemical characterizations. Appl. Biochem. Biotechnol. 2014, 174, 1043–1058. [Google Scholar] [CrossRef] [PubMed]
- Rahemi, V.; Trashin, S.; Meynen, V.; De Wael, K. An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications. Talanta 2016, 146, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, E. A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem. Commun. 2004, 6, 225–229. [Google Scholar] [CrossRef]
- Astuti, Y.; Topoglidis, E.; Cass, A.G.; Durrant, J.R. Direct spectroelectrochemistry of peroxidases immobilised on mesoporous metal oxide electrodes: Towards reagentless hydrogen peroxide sensing. Anal. Chim. Acta 2009, 648, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Ferapontova, E.E.; Grigorenko, V.G.; Egorov, A.M.; Börchers, T.; Ruzgas, T.; Gorton, L. Mediatorless biosensor for H2O2 based on recombinant forms of horseradish peroxidase directly adsorbed on polycrystalline gold. Biosens. Bioelectron. 2001, 16, 147–157. [Google Scholar] [CrossRef]
- Jetzschmann, K.J.; Yarman, A.; Rustam, L.; Kielb, P.; Urlacher, V.B.; Fischer, A.; Weidinger, I.M.; Wollenberger, U.; Scheller, F.W. Molecular LEGO by domain-imprinting of cytochrome P450 BM3. Colloids Surf. B Biointerfaces 2018, 164, 240–246. [Google Scholar] [CrossRef]
- Dai, Z.; Xu, X.; Wu, L.; Ju, H. Detection of trace phenol based on mesoporous silica derived tyrosinase-peroxidase biosensor. Electroanalysis 2005, 17, 1571–1577. [Google Scholar] [CrossRef]
- Kamada, K.; Tsukahara, S.; Soh, N. Enhanced ultraviolet light tolerance of peroxidase intercalated into titanate layers. J. Phys. Chem. C 2011, 115, 13232–13235. [Google Scholar] [CrossRef]
- Kamada, K.; Nakamura, T.; Tsukahara, S. Photoswitching of enzyme activity of horseradish peroxidase intercalated into semiconducting layers. Chem. Mater. 2011, 23, 2968–2972. [Google Scholar] [CrossRef]
- Kamada, K.; Moriyasu, A.; Soh, N. Visible-light-driven enzymatic reaction of peroxidase adsorbed on doped hematite thin films. J. Phys. Chem. C 2012, 116, 20694–20699. [Google Scholar] [CrossRef]
- Wollenberger, U.; Bogdanovskaya, V.; Scheller, F.; Bobrin, S.; Tarasevich, M. Enzyme electrodes using bioelectrocatalytic reduction of hydrogen peroxide. Anal. Lett. 1990, 23, 1795–1808. [Google Scholar] [CrossRef]
- Tatsuma, T.; Gondaira, M.; Watanabe, T. Peroxidase-incorporated polypyrrole membrane electrodes. Anal. Chem. 1992, 64, 1183–1187. [Google Scholar] [CrossRef]
- Tatsuma, T.; Watanabe, T.; Watanabe, T. Electrochemical characterization of polypyrrole bienzyme electrodes with glucose oxidase and peroxidase. J. Electroanal Chem. 1993, 356, 245–253. [Google Scholar] [CrossRef]
- Yoshida, S.; Kanno, H.; Watanabe, T. Glutamate sensors carrying glutamate oxidase/peroxidase bienzyme system on tin oxide electrode. Anal. Sci. 1995, 11, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Tatsuma, T.; Watanabe, T.; Tatsuma, S.; Watanabe, T. Substrate-purging enzyme electrodes. peroxidase/catalase electrodes for H2O2 with an improved upper sensing limit. Anal. Chem. 1994, 66, 290–294. [Google Scholar] [CrossRef]
- Razola, S.S.; Ruiz, B.L.; Diez, N.M.; Mark, H.B.; Kauffmann, J.M. Hydrogen peroxide sensitive amperometric biosensor based on horseradish peroxidase entrapped in a polypyrrole electrode. Biosens. Bioelectron. 2002, 17, 921–928. [Google Scholar] [CrossRef]
- Tatsuma, T.; Ariyama, K.; Oyama, N. Electron Transfer from a Polythiophene Derivative to Compounds I and II of Peroxidases. Anal. Chem. 1995, 67, 283–287. [Google Scholar] [CrossRef]
- Tatsuma, T.; Ariyama, K.; Oyama, N. Peroxidase-incorporated hydrophilic polythiophene electrode for the determination of hydrogen peroxide in acetonitrile. Anal. Chim. Acta 1996, 318, 297–301. [Google Scholar] [CrossRef]
- Yang, Y.; Mu, S. Bioelectrochemical responses of the polyaniline horseradish peroxidase electrodes. J. Electroanal. Chem. 1997, 432, 71–78. [Google Scholar] [CrossRef]
- Hua, M.Y.; Lin, Y.C.; Tsai, R.Y.; Chen, H.C.; Liu, Y.C. A hydrogen peroxide sensor based on a horseradish peroxidase/polyaniline/ carboxy-functionalized multiwalled carbon nanotube modified gold electrode. Electrochim. Acta 2011, 56, 9488–9495. [Google Scholar] [CrossRef]
- Bartlett, P.N.; Birkin, P.R.; Wang, J.H.; Palmisano, F.; De Benedetto, G. An enzyme switch employing direct electrochemical communication between horseradish peroxidase and a poly(aniline) film. Anal. Chem. 1998, 70, 3685–3694. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Jiang, C.; Fan, X.; Yang, R.; Sun, Y.; Zhang, C. A gold electrode modified with a nanoparticulate film composed of a conducting copolymer for ultrasensitive voltammetric sensing of hydrogen peroxide. Microchim. Acta 2018, 185, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, L.; Zhang, C.; Yang, R.; Sun, X.; Song, B.; Wong, C.P.; Xu, Y. An electrochemical biosensor based on conductive colloid particles self-assembled from poly(3-thiophenecarboxylic acid) and chitosan. J. Appl. Polym. Sci. 2018, 135, 1–7. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; Xu, H. A hydrogen peroxide sensor prepared by electropolymerization of pyrrole based on screen-printed carbon paste electrodes. Sensors 2007, 7, 239–250. [Google Scholar] [CrossRef] [Green Version]
- Qian, J.; Peng, L.; Wollenberger, U.; Scheller, F.W.; Liu, S. Analytical & three-dimensionally microporous polypyrrole film as an efficient matrix for enzyme immobilization. Anal. Bioanal. Electrochem. 2011, 3, 233–248. [Google Scholar]
- Kathuroju, P.K.; Jampana, N. Growth of polypyrrole-horseradish peroxidase microstructures for H2O2 biosensor. IEEE Trans. Instrum. Meas. 2012, 61, 2339–2345. [Google Scholar] [CrossRef]
- Morrin, A.; Ngamna, O.; Killard, A.J.; Moulton, S.E.; Smyth, M.R.; Wallace, G.G. An amperometric enzyme biosensor fabricated from polyailine nanoparticles. Electroanalysis 2005, 17, 423–430. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, R.; Zhai, J.; Tian, C. Bienzymatic glucose biosensor based on co-immobilization of peroxidase and glucose oxidase on a carbon nanotubes electrode. Biosens. Bioelectron. 2007, 23, 528–535. [Google Scholar] [CrossRef] [PubMed]
- Setti, L.; Fraleoni-Morgera, A.; Mencarelli, I.; Filippini, A.; Ballarin, B.; Di Biase, M. An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sens. Actuators B Chem. 2007, 126, 252–257. [Google Scholar] [CrossRef]
- Zhang, J.; Oyama, M. A hydrogen peroxide sensor based on the peroxidase activity of hemoglobin immobilized on gold nanoparticles-modified ITO electrode. Electrochim. Acta 2004, 50, 85–90. [Google Scholar] [CrossRef]
- Liu, S.; Dai, Z.; Chen, H.; Ju, H. Immobilization of hemoglobin on zirconium dioxide nanoparticles for preparation of a novel hydrogen peroxide biosensor. Biosens. Bioelectron. 2004, 19, 963–969. [Google Scholar] [CrossRef]
- Zheng, W.; Zheng, Y.F.; Jin, K.W.; Wang, N. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in TiO2 nanotube films. Talanta 2008, 74, 1414–1419. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, Q.; Li, J. Layered titanate nanosheets intercalated with myoglobin for direct electrochemistry. Adv. Funct. Mater. 2007, 17, 1958–1965. [Google Scholar] [CrossRef]
- Ranieri, A.; Monari, S.; Sola, M.; Borsari, M.; Battistuzzi, G.; Ringhieri, P.; Nastri, F.; Pavone, V.; Lombardi, A. Redox and electrocatalytic properties of mimochrome VI, a synthetic heme peptide adsorbed on gold. Langmuir 2010, 26, 17831–17835. [Google Scholar] [CrossRef]
- Vitale, R.; Lista, L.; Lau-Truong, S.; Tucker, R.T.; Brett, M.J.; Limoges, B.; Pavone, V.; Lombardi, A.; Balland, V. Spectroelectrochemistry of Fe(III)- and Co(III)-mimochrome VI artificial enzymes immobilized on mesoporous ITO electrodes. Chem. Commun. 2014, 50, 1894–1896. [Google Scholar] [CrossRef]
- Tatsuma, T.; Watanabe, T. Peroxidase model electrodes: Heme peptide modified electrodes as reagentless sensors for hydrogen peroxide. Anal. Chem. 1991, 63, 1580–1585. [Google Scholar] [CrossRef]
- Tatsuma, T.; Watanabe, T. Peroxidase model electrodes: Sensing of imidazole derivatives with heme peptide-modified electrodes. Anal. Chem. 1992, 64, 143–147. [Google Scholar] [CrossRef]
- Astuti, Y.; Topoglidis, E.; Durrant, J.R. Use of microperoxidase-11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. Anal. Chim. Acta 2011, 686, 126–132. [Google Scholar] [CrossRef]
- Neumann, B.; Kielb, P.; Rustam, L.; Fischer, A.; Weidinger, I.M.; Wollenberger, U. Bioelectrocatalytic reduction of hydrogen peroxide by microperoxidase-11 immobilized on mesoporous antimony-doped tin oxide. ChemElectroChem 2017, 4, 913–919. [Google Scholar] [CrossRef]
- Patolsky, F.; Gabriel, T.; Willner, I. Controlled electrocatalysis by microperoxidase-11 and Au-nanoparticle superstructures on conductive supports. J. Electroanal. Chem. 1999, 479, 69–73. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, Q.; Gu, Z.; Gu, X.; Zhao, L.; Li, Y.; Zheng, J. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode. Talanta 2013, 107, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Renault, C.; Harris, K.D.; Brett, M.J.; Balland, V.; Limoges, B. Time-resolved UV-visible spectroelectrochemistry using transparent 3D-mesoporous nanocrystalline ITO electrodes. Chem. Commun. 2011, 47, 1863–1865. [Google Scholar] [CrossRef] [PubMed]
- Renault, C.; Balland, V.; Limoges, B.; Costentin, C. Chronoabsorptometry to investigate conduction-band-mediated electron transfer in mesoporous TiO2 thin films. J. Phys. Chem. C 2015, 119, 14929–14937. [Google Scholar] [CrossRef]
- Renault, C.; Nicole, L.; Sanchez, C.; Costentin, C.; Balland, V.; Limoges, B. Unraveling the charge transfer/electron transport in mesoporous semiconductive TiO2 films by voltabsorptometry. Phys. Chem. Chem. Phys. 2015, 17, 10592–10607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korri-Youssoufi, H.; Desbenoit, N.; Ricoux, R.; Mahy, J.P.; Lecomte, S. Elaboration of a new hydrogen peroxide biosensor using microperoxidase 8 (MP8) immobilized on a polypyrrole coated electrode. Mater. Sci. Eng. C 2008, 28, 855–860. [Google Scholar] [CrossRef]
- Graça, J.S.; De Oliveira, R.F.; De Moraes, M.L.; Ferreira, M. Amperometric glucose biosensor based on layer-by-layer films of microperoxidase-11 and liposome-encapsulated glucose oxidase. Bioelectrochemistry 2014, 96, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, A.A.; Koh, W.C.A.; Noh, H.B.; Shim, Y.B. A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: Removal of interferences by co-immobilized enzymes. Biosens. Bioelectron. 2010, 26, 1080–1086. [Google Scholar] [CrossRef]
- Ioannidis, L.A.; Nikolaou, P.; Panagiotopoulos, A.; Vassi, A.; Topoglidis, E. Microperoxidase-11 modified mesoporous SnO2 film electrodes for the detection of antimalarial drug artemisinin. Anal. Methods 2019, 11, 3117–3125. [Google Scholar] [CrossRef]
- Shigehara, K.; Anson, F.C. Electrocatalytic activity of three iron porphyrins in the reductions of dioxygen and hydrogen peroxide at graphite electrodes. J. Phys. Chem. 1982, 86, 2776–2783. [Google Scholar] [CrossRef]
- Brusova, Z.; Magner, E. Kinetics of oxidation of hydrogen peroxide at hemin-modified electrodes in nonaqueous solvents. Bioelectrochemistry 2009, 76, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Yarman, A.; Neumann, B.; Bosserdt, M.; Gajovic-Eichelmann, N.; Scheller, F.W. Peroxide-Dependent Analyte Conversion by the Heme Prosthetic Group, the Heme Peptide “Microperoxidase-11” and Cytochrome c on Chitosan Capped Gold Nanoparticles Modified Electrodes. Biosensors 2012, 2, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wollenberger, U.; Lisdat, F.; Ge, B.; Scheller, F.W. Superoxide sensor based on hemin modified electrode. Sens. Actuators B Chem. 2000, 70, 115–120. [Google Scholar] [CrossRef]
- Peteu, S.F.; Bose, T.; Bayachou, M. Polymerized hemin as an electrocatalytic platform for peroxynitrite’s oxidation and detection. Anal. Chim. Acta 2013, 780, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Reys, J.R.M.; Lima, P.R.; Cioletti, A.G.; Ribeiro, A.S.; De Abreu, F.C.; Goulart, M.O.F.; Kubota, L.T. An amperometric sensor based on hemin adsorbed on silica gel modified with titanium oxide for electrocatalytic reduction and quantification of artemisinin. Talanta 2008, 77, 909–914. [Google Scholar] [CrossRef]
- Feng, J.-J.; Li, Z.-H.; Li, Y.-F.; Wang, A.-J.; Zhang, P.-P. Electrochemical determination of dioxygen and hydrogen peroxide using Fe3O4@SiO2@hemin microparticles. Microchim. Acta 2011, 176, 201–208. [Google Scholar] [CrossRef]
- Panagiotopoulos, A.; Gkouma, A.; Vassi, A.; Johnson, C.J.; Cass, A.E.G.; Topoglidis, E. Hemin modified SnO2 films on ITO-PET with enhanced activity for electrochemical sensing. Electroanalysis 2018, 30, 1956–1964. [Google Scholar] [CrossRef]
- Samourgkanidis, G.; Nikolaou, P.; Gkovosdis-Louvaris, A.; Sakellis, E.; Blana, I.M.; Topoglidis, E. Hemin-modified SnO2/metglas electrodes for the simultaneous electrochemical and magnetoelastic sensing of H2O2. Coatings 2018, 8, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Zhao, L.; Bai, H.; Shi, G. Electrochemical detection of dioxygen and hydrogen peroxide by hemin immobilized on chemically converted graphene. J. Electroanal. Chem. 2011, 657, 34–38. [Google Scholar] [CrossRef]
- Amadelli, R.; Bregola, M.; Polo, E.; Carassiti, V.; Maldotti, A. Photooxidation of hydrocarbons on porphyrin-modified titanium dioxide powders. J. Chem. Soc. Chem. Commun. 1992, 1355–1357. [Google Scholar] [CrossRef]
- Molinari, A.; Amadelli, R.; Antolini, L.; Maldotti, A.; Battioni, P.; Mansuy, D. Phororedox and photocatalytic processes on Fe (III)—Porphyrin surface modified nanocrystalline TiO2. J. Mol. Catal. A Chem. 2000, 158, 521–531. [Google Scholar] [CrossRef]
- Obare, S.O.; Ito, T.; Balfour, M.H.; Meyer, G.J. Ferrous hemin oxidation by organic halides at nanocrystalline TiO2 interfaces. Nano Lett. 2003, 3, 1151–1153. [Google Scholar] [CrossRef]
- Obare, S.O.; Ito, T.; Meyer, G.J. Controlling reduction potentials of semiconductor-supported molecular catalysts for environmental remediation of organohalide pollutants. Environ. Sci. Technol. 2005, 39, 6266–6272. [Google Scholar] [CrossRef]
- Obare, S.O.; Ito, T.; Meyer, G.J. Multi-electron transfer from heme-functionalized nanocrystalline TiO2 to organohalide pollutants. J. Am. Chem. Soc. 2006, 128, 712–713. [Google Scholar] [CrossRef]
- Stromberg, J.R.; Wnuk, J.D.; Pinlac, R.A.F.; Meyer, G.J. Multielectron transfer at heme-functionalized nanocrystalline TiO2: Reductive dechlorination of DDT and CCl 4 forms stable carbene compounds. Nano Lett. 2006, 6, 1284–1286. [Google Scholar] [CrossRef]
- Gu, T.T.; Wu, X.M.; Dong, Y.M.; Wang, G.L. Novel photoelectrochemical hydrogen peroxide sensor based on hemin sensitized nanoporous NiO based photocathode. J. Electroanal. Chem. 2015, 759, 27–31. [Google Scholar] [CrossRef]
- Peteu, S.; Peiris, P.; Gebremichael, E.; Bayachou, M. Nanostructured poly (3,4-ethylenedioxythiophene)-metalloporphyrin films: Improved catalytic detection of peroxynitrite. Biosens. Bioelectron. 2010, 25, 1914–1921. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, R.; Kobayashi, C.; Nakagawa, A.; Aoyagi, S.; Aikawa, T.; Kondo, T.; Kasai, S.; Yuasa, M. A reactive oxygen/nitrogen species sensor fabricated from an electrode modified with a polymerized iron porphyrin and a polymer electrolyte membrane. Anal. Sci. 2017, 33, 911–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neumann, B.; Götz, R.; Wrzolek, P.; Scheller, F.W.; Weidinger, I.M.; Schwalbe, M.; Wollenberger, U. Enhancement of the electrocatalytic activity of thienyl-substituted iron porphyrin electropolymers by a hangman effect. ChemCatChem 2018, 10, 4353–4361. [Google Scholar] [CrossRef]
- Kulys, J.; Bilitewski, U.; Schmid, R.D. The kinetics of simultaneous conversion of hydrogen peroxide and aromatic compounds at peroxidase electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1991, 26, 277–286. [Google Scholar] [CrossRef]
- Csöregi, E.; Jönsson-Pettersson, G.; Gorton, L. Mediatorless electrocatalytic reduction of hydrogen peroxide at graphite electrodes chemically modified with peroxidases. J. Biotechnol. 1993, 30, 315–337. [Google Scholar] [CrossRef]
- Domínguez Sánchez, P.; Miranda Ordieres, A.J.; Costa García, A.; Blanco Tuñón, P. Peroxidase–ferrocene modified carbon paste electrode as an amperometric sensor for the hydrogen peroxide assay. Electroanalysis 1991, 3, 281–285. [Google Scholar] [CrossRef]
- Elkington, D.; Wasson, M.; Belcher, W.; Dastoor, P.C.; Zhou, X. Printable organic thin film transistors for glucose detection incorporating inkjet-printing of the enzyme recognition element. Appl. Phys. Lett. 2015, 106, 263301. [Google Scholar] [CrossRef]
- Faiella, M.; Maglio, O.; Nastri, F.; Lombardi, A.; Lista, L.; Hagen, W.R.; Pavone, V. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein. Chem. A Eur. J. 2012, 18, 15960–15971. [Google Scholar] [CrossRef] [PubMed]
Electrode Setup | Eappl (V) | Measuring Conditions | LR (µM) | Sensitivity (mA M−1 cm−2) | Reference |
---|---|---|---|---|---|
A: HRP | |||||
HRP/APTES/SnO2 | 0.15 | pH 5.9, Med. | 0.01–1 | 50 | [14,134] |
HRP/PLL/mpSnO2 | −0.2 | pH 8 | 1–20 | 1070 | [102] |
dgHRP-His6/mpATO | 0.2 | pH 7.4 | 5–20 | 73 | [38] |
Nafion/HRP/ZnO/ITO | −0.2 | pH 7.4 | 500–9000 | 7.45 | [90] |
HRP/Chi-AOB/GC | −0.11 | pH 7 | 1–121 | 1.44 | [91] |
HRP-ZnO-chitosan/GC | −0.2 1 | pH 7, Med. | 10–1800 | n.d. | [89] |
HRP/APTMS/npTiO2 | <−0.3 *1 | pH 7 | 100–1,500 | 2864 * | [99] |
Nafion/HRP-TiO2/Gr/Au | −0.3 1 | pH 7, Med. | < 400 | 1090 | [100] |
HRP/SnO2/GC | −0.3 1 | pH 6 | 10–250 | ≈215 * | [84] |
TiO2/HRP/GC | −0.15 1 | pH 7, Med. | 80–560 | 488 | [87] |
HRP in PPy/pyrographite | 0.01 1 | pH 7 | 50–1750 | 0.024 * | [109] |
HRP in PPy/SnO2 | 0.15 | pH 6.4/7.4 | 0.01–10 | n.d. | [110] |
HRP in PPy/SWCNT/Au | −0.1 | pH 6.8 | 0.5–1000 | 430 | [126] |
HRP in PPy/SPCP | −0.3 | pH 7, Med. | 100–2000 | 33.2 | [122] |
HRP/PANI/Pt | 0.2 1 | pH 6.8 | 1–8 * | n.d. | [117] |
HRP/PANI/MWCNT/Au | −0.35 | pH 7 | 86–10,000 | 194.9 | [118] |
HRP+polythiophene/SnO2 | 0.4 | - | 0.05–0.5 | n.d. | [115] |
HRP/PEDOT-PSS/ITO | −0.1 1 | pH 6.5, Med. | <1000 | 0.54 | [127] |
B: Microperoxidases | |||||
MP-9/APTES/SnO2 | 0.15 | pH 7.4 | > 1 | 0.9 | [134] |
MP-11/PLL/mpSnO2 | −0.2 | pH 8 | 0.05–30 | 4300 | [136] |
MP-11/PDADMAC/mpATO | 0 | pH 8 | 10–750 | 10.6 | [137] |
[MP-11/PEI]2/ITO | 0 1 | pH 6.3 | 25–125 | 2.14 | [144] |
[MP-11/AuNP]5/ITO | 0 1 | pH 7.3 | 100–1000 * | 92 | [138] |
MP-11/npSiO2-Au/ITO | −0.3 | pH 7 | 2–600 | 1075 * | [139] |
MP-8 in Ppy/GC | −0.1 1 | pH 7.4 | 1–9 * | - | [143] |
C: Fe-porphyrins | |||||
Fe3O4-SiO2-Hemin/GC | −0.4 1 | pH 7 | 1–160 | 1662 * | [153] |
Hemin/SnO2/ITO-PET | −0.3 | pH 7 | 1.5–90 | n.d. | [154] |
Hemin/SnO2-metglas | −0.4 | pH 7 | 2–90 | 3191 * | [155] |
Hemin/npNiO/ITO | −0.05 | pH 7 | 0.5–500 | n.d. | [163] |
Fe-porphyrin-PEDOT/GC | 0.2 | pH 7 | 50–550 | 35.2 | [166] |
Fe-Hangman-PEDOT/GC | 0.2 | pH 7 | 50–1000 | 86.6 | [166] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neumann, B.; Wollenberger, U. Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. Sensors 2020, 20, 3692. https://doi.org/10.3390/s20133692
Neumann B, Wollenberger U. Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. Sensors. 2020; 20(13):3692. https://doi.org/10.3390/s20133692
Chicago/Turabian StyleNeumann, Bettina, and Ulla Wollenberger. 2020. "Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors" Sensors 20, no. 13: 3692. https://doi.org/10.3390/s20133692
APA StyleNeumann, B., & Wollenberger, U. (2020). Electrochemical Biosensors Employing Natural and Artificial Heme Peroxidases on Semiconductors. Sensors, 20(13), 3692. https://doi.org/10.3390/s20133692