GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things
Abstract
:1. Introduction
- We propose an image privacy protection framework that can protect the privacy in IoMT images.
- We propose a GAN-based method to generate the replacement content for private objects in images.
- We use differential privacy methods to control image generation between image usability and privacy protection.
2. Related Work
2.1. Image Privacy Issues and Protection
2.2. Deep-Learning-Based Image Object Detection and Segmentation
2.3. GAN-Based Content Generation
2.4. Privacy Protection
3. Preliminaries
3.1. Privacy Protection and Image Utility
3.2. Formulation of Image De-Identification
3.3. Differential Privacy
4. Image De-Identification Framework
4.1. Step-I: Object Detection and Private Object Extraction
4.1.1. Object Detection
4.1.2. Private Objects Extraction
4.2. STEP-II: De-Identification Content Generation
Algorithm 1: Image de-identification content generation. |
Input: The private image to de-identify; A pretrained generator .
Output: The de-identified image optimized via Initialize latent vector , differential privacy Laplace noise with and ; while not converged do ; end ; |
4.3. STEP-III: De-Identified Content Replacement
Algorithm 2: Image protected by de-identification content swapping. |
Input: The original image contains private objects ;
de-identified objects in the image: Output: The protected image for each in do end |
5. Experiments and Discussions
5.1. Experiment Setup
5.2. Performance Evaluation Metrics
5.2.1. Privacy Metrics
5.2.2. Image Utility Metrics
5.3. Street View Image Protection
5.3.1. Human Face Privacy Protection
Algorithm 3: Facial image de-identification. |
Input: A human face image to protect; a pretrained generator Output: The de-identify facial image . Initialize latent code ; while not converged do ; end |
5.3.2. Facial Privacy Protection Discussion
5.3.3. Car License Plate Privacy Protection
5.3.4. Car License Plate Privacy Protection Discussion
5.4. Performance Evaluation
5.4.1. Privacy Protection Metrics
5.4.2. Image Utility Metrics
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Province Name | Distance to Beijing (km) | 2-Digit Code |
---|---|---|
Beijing | 0 | 00 |
Tianjin | 96.07188 | 01 |
Hebei | 239.4603 | 02 |
Shandong | 356.9375 | 03 |
Shanxi | 407.3106 | 04 |
Neimengu | 424.5428 | 05 |
Henan | 620.2232 | 06 |
Liaoning | 630.724 | 07 |
Jiangsu | 860.7032 | 08 |
Jilin | 867.213 | 09 |
Ningxia | 884.2019 | 10 |
Anhui | 897.8403 | 11 |
Shanxi | 907.8513 | 12 |
Hubei | 1041.318 | 13 |
Shanghai | 1041.987 | 14 |
Heilongjiang | 1056.846 | 15 |
Zhejiang | 1102.843 | 16 |
Gansu | 1184.73 | 17 |
Jiangxi | 1242.833 | 18 |
Hunan | 1316.041 | 19 |
Qinghai | 1340.82 | 20 |
Chongqing | 1419.309 | 21 |
Sichuan | 1505.931 | 22 |
Fujian | 1527.525 | 23 |
Guizhou | 1729.627 | 24 |
Guangdong | 1856.641 | 25 |
Guangxi | 2047.263 | 26 |
Yunnan | 2068.306 | 27 |
Hainan | 2249.545 | 28 |
Xinjiang | 2433.955 | 29 |
Xizang | 2559.149 | 30 |
References
- EU. The EU General Data Protection Regulation. 2019. Available online: https://eugdpr.org/ (accessed on 19 July 2019).
- EU. What is Considered Personal Data? 2019. Available online: https://gdpr.eu/eu-gdpr-personal-data/ (accessed on 19 July 2019).
- Mannan, M.; van Oorschot, P.C. Privacy-enhanced sharing of personal content on the web. In Proceedings of the 17th International Conference on World Wide Web—WWW ’08, Beijing, China, 21–25 April 2008; ACM Press: Beijing, China, 2008; p. 487. [Google Scholar] [CrossRef]
- Vyas, N.; Squicciarini, A.C.; Chang, C.C.; Yao, D. Towards automatic privacy management in Web 2.0 with semantic analysis on annotations. In Proceedings of the 5th International ICST Conference on Collaborative Computing: Networking, Applications, Worksharing, Washington, DC, USA, 11–14 November 2009. [Google Scholar] [CrossRef]
- Wang, N.; Xu, H.; Grossklags, J. Third-party apps on Facebook: Privacy and the illusion of control. In Proceedings of the 5th ACM Symposium on Computer Human Interaction for Management of Information Technology—CHIMIT ’11, Cambridge, MA, USA, 4–5 December 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Squicciarini, A.C.; Xu, H.; Zhang, X.L. CoPE: Enabling collaborative privacy management in online social networks. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 521–534. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Ding, M.; Shaham, S.; Rahayu, W.; Farokhi, F.; Lin, Z. When Machine Learning Meets Privacy: A Survey and Outlook. arXiv 2020, arXiv:2011.11819. [Google Scholar]
- Viola, P.; Jones, M.J. Robust real-time face detection. Int. J. Comput. Vis. 2004, 57, 137–154. [Google Scholar] [CrossRef]
- Wen, Y.; Liu, B.; Xie, R.; Zhu, Y.; Cao, j.; Song, L. A Hybrid Model for Natural Face De-Identification with Adjustable Privacy. In Proceedings of the 2020 IEEE Visual Communications and Image Processing (VCIP), Virtual Conference, 1–4 December 2020. [Google Scholar]
- Tonge, A.; Caragea, C. Image privacy prediction using deep neural networks. ACM Trans. Web (TWEB) 2020, 14, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhang, B.; Kuang, Z.; Lin, D.; Fan, J. iPrivacy: Image Privacy Protection by Identifying Sensitive Objects via Deep Multi-Task Learning. IEEE Trans. Inf. Forensics Secur. 2017, 12, 1005–1016. [Google Scholar] [CrossRef]
- Uittenbogaard, R.; Sebastian, C.; Vijverberg, J.; Boom, B.; Gavrila, D.; de With, P.H.N. Privacy Protection in Street-View Panoramas Using Depth and Multi-View Imagery. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 10573–10582. [Google Scholar]
- Liu, Y.; Zhang, W.; Yu, N. Protecting Privacy in Shared Photos via Adversarial Examples Based Stealth. Secur. Commun. Netw. 2017, 2017, 1897438. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xiong, J.; Wu, Y.; Ding, M.; Wu, C.M. Protecting Multimedia Privacy from Both Humans and AI. In Proceedings of the 2019 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB), Jeju, Korea, 5–7 June 2019; pp. 1–6. [Google Scholar]
- Liu, B.; Ding, M.; Zhu, T.; Xiang, Y.; Zhou, W. Adversaries or allies? Privacy and deep learning in big data era. Concurr. Comput. Pract. Exp. 2019, 31, e5102. [Google Scholar] [CrossRef]
- Xue, H.; Liu, B.; Ding, M.; Song, L.; Zhu, T. Hiding Private Information in Images From AI. In Proceedings of the 2020 IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020. [Google Scholar]
- McPherson, R.; Shokri, R.; Shmatikov, V. Defeating image obfuscation with deep learning. arXiv 2016, arXiv:1609.00408. [Google Scholar]
- Tang, L.; Ma, W.; Grobler, M.; Meng, W.; Wang, Y.; Wen, S. Faces are Protected as Privacy: An Automatic Tagging Framework Against Unpermitted Photo Sharing in Social Media. IEEE Access 2019, 7, 75556–75567. [Google Scholar] [CrossRef]
- Pesce, J.P.; Casas, D.L. Privacy Attacks in Social Media Using Photo Tagging Networks: A Case Study with Facebook. In Proceedings of the 1st Workshop on Privacy and Security in Online Social Media, Lyon, France, 17 April 2012; pp. 1–8. [Google Scholar]
- The New York Times. San Francisco Bans Facial Recognition Technology. 2019. Available online: https://www.nytimes.com/2019/05/14/us/facial-recognition-ban-san-francisco.html (accessed on 19 July 2019).
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 580–587. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, B.; Arbelaez, P.; Girshick, R.; Malik, J. Hypercolumns for object segmentation and fine-grained localization. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 447–456. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Las Condes, Chile, 11–18 December 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 7–10 December 2015; pp. 91–99. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [Google Scholar]
- Efros, A.; Leung, T. Texture synthesis by non-parametric sampling. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Kerkyra, Greece, 20–25 September 1999; Volume 2, pp. 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Barnes, C.; Shechtman, E.; Finkelstein, A.; Goldman, D.B. PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing. ACM Trans. Graph. 2009, 28, 24. [Google Scholar] [CrossRef]
- Pnevmatikakis, E.A.; Maragos, P. An inpainting system for automatic image structure—Texture restoration with text removal. In Proceedings of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 2616–2619. [Google Scholar] [CrossRef] [Green Version]
- Bertalmio, M.; Vese, L.; Sapiro, G.; Osher, S. Simultaneous Structure and Texture Image Inpainting. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, 18–20 June 2003. [Google Scholar]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [Google Scholar]
- Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-normalizing neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 971–980. [Google Scholar]
- Mao, X.; Li, Q.; Xie, H.; Lau, R.; Wang, Z.; Smolley, S. Least Squares Generative Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2813–2821. [Google Scholar]
- Xiong, W.; Yu, J.; Lin, Z.; Yang, J.; Lu, X.; Barnes, C.; Luo, J. Foreground-Aware Image Inpainting. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5833–5841. [Google Scholar]
- Gulrajani, I.; Ahmed, F.; Arjovsky, M.; Dumoulin, V.; Courville, A.C. Improved training of wasserstein gans. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 5767–5777. [Google Scholar]
- Karras, T.; Laine, S.; Aila, T. A Style-Based Generator Architecture for Generative Adversarial Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 4396–4405. [Google Scholar]
- Meng, W.; Li, W.; Wang, Y.; Au, M.H. Detecting insider attacks in medical cyber–physical networks based on behavioral profiling. Future Gener. Comput. Syst. 2020, 108, 1258–1266. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, W.; Li, W.; Li, J.; Liu, W.X.; Xiang, Y. A fog-based privacy-preserving approach for distributed signature-based intrusion detection. J. Parallel Distrib. Comput. 2018, 122, 26–35. [Google Scholar] [CrossRef]
- Ma, L.; Liu, X.; Pei, Q.; Xiang, Y. Privacy-Preserving Reputation Management for Edge Computing Enhanced Mobile Crowdsensing. IEEE Trans. Serv. Comput. 2019, 12, 786–799. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.; Cheng, L.; Qiu, S.; Wang, W.; Zhang, X.; Zhang, Z. CreditCoin: A Privacy-Preserving Blockchain-Based Incentive Announcement Network for Communications of Smart Vehicles. IEEE Trans. Intell. Transp. Syst. 2018, 19, 2204–2220. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhu, T.; Zhang, T.; Zhang, J.; Yu, S.; Zhou, W. Security and privacy in 6G networks: New areas and new challenges. Digit. Commun. Netw. 2020, 6, 281–291. [Google Scholar] [CrossRef]
- Sweeney, L. k-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzziness-Knowl. Syst. 2002, 10, 557–570. [Google Scholar] [CrossRef] [Green Version]
- Machanavajjhala, A.; Kifer, D.; Gehrke, J.; Venkitasubramaniam, M. L-diversity: Privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 2007, 1, 3. [Google Scholar] [CrossRef]
- Li, N.; Li, T.; Venkatasubramanian, S. t-closeness: Privacy beyond k-anonymity and l-diversity. In Proceedings of the 2007 IEEE 23rd International Conference on Data Engineering, Istanbul, Turkey, 15–20 April 2017; pp. 106–115. [Google Scholar]
- Dwork, C. Differential privacy. In Proceedings of the 33rd International Conference on Automata, Languages and Programming-Volume Part II, Beijing, China, 15–20 May 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–12. [Google Scholar]
- Abdal, R.; Qin, Y.; Wonka, P. Image2stylegan: How to embed images into the stylegan latent space? In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 4432–4441. [Google Scholar]
- Nguyen, T.; Nguyen, C.; Nguyen, D.; Nahavandi, S. Deep learning for deepfakes creation and detection. arXiv 2019, arXiv:1909.11573. [Google Scholar]
- Thies, J.; Zollhofer, M.; Stamminger, M.; Theobalt, C.; Nießner, M. Face2face: Real-time face capture and reenactment of rgb videos. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 2387–2395. [Google Scholar]
- Korshunova, I.; Shi, W.; Dambre, J.; Theis, L. Fast face-swap using convolutional neural networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3677–3685. [Google Scholar]
- Thies, J.; Zollhöfer, M.; Nießner, M. Deferred neural rendering: Image synthesis using neural textures. In ACM Transactions on Graphics; ACM: New York, NY, USA, 2019; pp. 1–12. [Google Scholar]
- Rossler, A.; Cozzolino, D.; Verdoliva, L.; Riess, C.; Thies, J.; Nießner, M. Faceforensics++: Learning to detect manipulated facial images. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019; pp. 1–11. [Google Scholar]
- Kupyn, O.; Budzan, V.; Mykhailych, M.; Mishkin, D.; Matas, J. DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 8183–8192. [Google Scholar]
- Nah, S.; Kim, T.H.; Lee, K.M. Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 257–265. [Google Scholar]
- Menon, S.; Damian, A.; Hu, S.; Ravi, N.; Rudin, C. PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 16–18 June 2020; pp. 2437–2445. [Google Scholar]
Methods | Original | Blur | Mosaic | Our Methods |
---|---|---|---|---|
Dhash | 0 | 12,873.65 | 13,370.19 | 641.71 |
SSIM(10) | 100 | 98.18 | 97.70 | 99.33 |
(10) | 0 | 1692.25 | 1652.57 | 446.74 |
0 | 9983.06 | 14,757.19 | 18,593.41 | |
) | 0 | 3.99 | 5.23 | 10.4 |
Methods | Original | Blur | Mosaic | Our Methods |
---|---|---|---|---|
Dhash | 0 | 4047.80 | 4427.79 | 134.25 |
SSIM(10) | 100 | 64.63 | 48.15 | 97.38 |
(10) | 0 | 1009.4 | 1022.25 | 236.72 |
0 | 5832.96 | 10,812.2 | 2045.48 | |
) | 0 | 16.68 | 28.64 | 5.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Xue, H.; Liu, B.; Wang, Y.; Zhu, S.; Ding, M. GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things. Sensors 2021, 21, 58. https://doi.org/10.3390/s21010058
Yu J, Xue H, Liu B, Wang Y, Zhu S, Ding M. GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things. Sensors. 2021; 21(1):58. https://doi.org/10.3390/s21010058
Chicago/Turabian StyleYu, Jinao, Hanyu Xue, Bo Liu, Yu Wang, Shibing Zhu, and Ming Ding. 2021. "GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things" Sensors 21, no. 1: 58. https://doi.org/10.3390/s21010058
APA StyleYu, J., Xue, H., Liu, B., Wang, Y., Zhu, S., & Ding, M. (2021). GAN-Based Differential Private Image Privacy Protection Framework for the Internet of Multimedia Things. Sensors, 21(1), 58. https://doi.org/10.3390/s21010058