Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture
Abstract
:1. Introduction
2. Unmanned Aerial Systems (UASs) Application in Viticultural Scenarios
2.1. Rows Segmentation and Crop Features Detection Techniques
2.2. Vineyard Remote Analysis for Variability Monitoring
2.3. Rows Area and Volume Estimation
2.4. Crop Disease Detection
2.5. Prescription Maps for Spraying Management
3. UAS Platforms, Sensors, and _targets
4. Perspective and Future Challenges
5. Conclusions and Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pierce, F.J.; Nowak, P. Aspects of Precision Agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 1999; Volume 67, pp. 1–85. ISBN 978-0-12-000767-7. [Google Scholar]
- Blackmore, S. The Role of Yield Maps in Precision Farming. Ph.D. Thesis, Cranfield University, Cranfield, UK, 2003; p. 171. [Google Scholar]
- Sudduth, K.A. Engineering Technologies for Precision Farming. In International Seminar on Agricultural Mechanization Technology for Precision Farming; Rural Development Admin: Suwon, Korean, 1999; p. 16. [Google Scholar]
- Arnó, J.; Martínez Casasnovas, J.A.; Ribes Dasi, M.; Rosell, J.R. Review. Precision Viticulture. Research Topics, Challenges and Opportunities in Site-Specific Vineyard Management. Span. J. Agric. Res. 2009, 7, 779. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Di Gennaro, S.F. Technology in Precision Viticulture: A State of the Art Review. Int. J. Wine Res. 2015, 69. [Google Scholar] [CrossRef] [Green Version]
- Karakizi, C.; Oikonomou, M.; Karantzalos, K. Spectral Discrimination and Reflectance Properties of Various Vine Varieties from Satellite, UAV and Proximate Sensors. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Borgogno-Mondino, E.; Lessio, A.; Tarricone, L.; Novello, V.; de Palma, L. A Comparison between Multispectral Aerial and Satellite Imagery in Precision Viticulture. Precis. Agric. 2018, 19, 195–217. [Google Scholar] [CrossRef]
- Matese, A.; Toscano, P.; Di Gennaro, S.; Genesio, L.; Vaccari, F.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Anastasiou, E.; Balafoutis, A.; Darra, N.; Psiroukis, V.; Biniari, A.; Xanthopoulos, G.; Fountas, S. Satellite and Proximal Sensing to Estimate the Yield and Quality of Table Grapes. Agriculture 2018, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Di Gennaro, S.; Dainelli, R.; Palliotti, A.; Toscano, P.; Matese, A. Sentinel-2 Validation for Spatial Variability Assessment in Overhead Trellis System Viticulture Versus UAV and Agronomic Data. Remote Sens. 2019, 11, 2573. [Google Scholar] [CrossRef] [Green Version]
- Dobrowski, S.Z.; Ustin, S.L.; Wolpert, J.A. Remote Estimation of Vine Canopy Density in Vertically Shoot-Positioned Vineyards: Determining Optimal Vegetation Indices. Aust. J. Grape Wine Res. 2002, 8, 117–125. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The Application of Small Unmanned Aerial Systems for Precision Agriculture: A Review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Barbedo, J.G.A. A Review on the Use of Unmanned Aerial Vehicles and Imaging Sensors for Monitoring and Assessing Plant Stresses. Drones 2019, 3, 40. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicki, D.; Kedzierski, M.; Fryskowska, A. Assesment of The Influence of Uav Image Quality on The Orthophoto Production. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 8. [Google Scholar] [CrossRef] [Green Version]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef] [Green Version]
- Ju, C.; Son, H. Multiple UAV Systems for Agricultural Applications: Control, Implementation, and Evaluation. Electronics 2018, 7, 162. [Google Scholar] [CrossRef] [Green Version]
- Xue, X.; Lan, Y.; Sun, Z.; Chang, C.; Hoffmann, W.C. Develop an Unmanned Aerial Vehicle Based Automatic Aerial Spraying System. Comput. Electron. Agric. 2016, 128, 58–66. [Google Scholar] [CrossRef]
- Wang, C.; He, X.; Wang, X.; Wang, Z.; Wang, S.; Li, L.; Bonds, J.; Herbst, A.; Wang, Z. Method and Distribution Characteristics of Spatial Pesticide Spraying Deposition Quality Balance for Unmanned Aerial Vehicle. Int. J. Agric. Biol. Eng. 2018, 11, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.E.; Gannon, T.W.; Richardson, R.J.; Yelverton, F.H.; Leon, R.G. Integration of Remote-weed Mapping and an Autonomous Spraying Unmanned Aerial Vehicle for Site-specific Weed Management. Pest. Manag. Sci. 2020, 76, 1386–1392. [Google Scholar] [CrossRef] [Green Version]
- Giles, D.; Billing, R. Deployment and Performance of a Uav for Crop Spraying. Chem. Eng. Trans. 2015, 44, 307–312. [Google Scholar] [CrossRef]
- Sarri, D.; Martelloni, L.; Rimediotti, M.; Lisci, R.; Lombardo, S.; Vieri, M. Testing a Multi-Rotor Unmanned Aerial Vehicle for Spray Application in High Slope Terraced Vineyard. J. Agric. Eng. 2019, 50, 38–47. [Google Scholar] [CrossRef]
- Sassu, A.; Ghiani, L.; Pazzona, A.; Gambella, F. Development and Implementation of an Ultra-Low Volume (ULV) Spraying Equipment Installed on a Commercial UAV. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production: International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA); Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switherlands, 2020; Volume 67, pp. 563–571. ISBN 978-3-030-39298-7. [Google Scholar]
- Valente, J.; Sanz, D.; Barrientos, A.; del Cerro, J.; Ribeiro, Á.; Rossi, C. An Air-Ground Wireless Sensor Network for Crop Monitoring. Sensors 2011, 11, 6088–6108. [Google Scholar] [CrossRef] [Green Version]
- Andújar, D.; Moreno, H.; Bengochea-Guevara, J.M.; de Castro, A.; Ribeiro, A. Aerial Imagery or On-Ground Detection? An Economic Analysis for Vineyard Crops. Comput. Electron. Agric. 2019, 157, 351–358. [Google Scholar] [CrossRef]
- SESAR Joint Undertaking (2016) European Drones Outlook Study. Unlocking the Value for Europe. Available online: www.sesarju.eu/sites/default/files/documents/reports/European_Drones_Outlook_Study_2016.pdf (accessed on 11 January 2021).
- Mukherjee, A.; Misra, S.; Raghuwanshi, N.S. A Survey of Unmanned Aerial Sensing Solutions in Precision Agriculture. J. Netw. Comput. Appl. 2019, 148, 102461. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A Review on UAV-Based Applications for Precision Agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef] [Green Version]
- Khanal, S.; Fulton, J.; Shearer, S. An Overview of Current and Potential Applications of Thermal Remote Sensing in Precision Agriculture. Comput. Electron. Agric. 2017, 139, 22–32. [Google Scholar] [CrossRef]
- Carlson, T.N.; Ripley, D.A. On the Relation between NDVI, Fractional Vegetation Cover, and Leaf Area Index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Chen, J.; Chen, Y.; Li, J.; Yan, G.; Zhang, X. Analysis of NDVI and Scaled Difference Vegetation Index Retrievals of Vegetation Fraction. Remote Sens. Environ. 2006, 101, 366–378. [Google Scholar] [CrossRef]
- Matese, A.; Primicerio, J.; Di Gennaro, F.; Fiorillo, E.; Vaccari, F.P.; Genesio, L. Development And Application Of An Autonomous And Flexible Unmanned Aerial Vehicle For Precision Viticulture. Acta Hortic. 2013, 63–69. [Google Scholar] [CrossRef]
- Poblete-Echeverría, C.; Olmedo, G.; Ingram, B.; Bardeen, M. Detection and Segmentation of Vine Canopy in Ultra-High Spatial Resolution RGB Imagery Obtained from Unmanned Aerial Vehicle (UAV): A Case Study in a Commercial Vineyard. Remote Sens. 2017, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Otsu, N. A Tlreshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An Automatic Object-Based Method for Optimal Thresholding in UAV Images: Application for Vegetation Detection in Herbaceous Crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Blaschke, T. Object Based Image Analysis for Remote Sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Brenes, F.M.; López-Granados, F.; Torres-Sánchez, J.; Peña, J.M.; Ramírez, P.; Castillejo-González, I.L.; de Castro, A.I. Automatic UAV-Based Detection of Cynodon Dactylon for Site-Specific Vineyard Management. PLoS ONE 2019, 14, e0218132. [Google Scholar] [CrossRef]
- Johansen, K.; Raharjo, T.; McCabe, M. Using Multi-Spectral UAV Imagery to Extract Tree Crop Structural Properties and Assess Pruning Effects. Remote Sens. 2018, 10, 854. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.-J.; de Castro, A.I.; Torres-Sánchez, J.; Triviño-Tarradas, P.; Jiménez-Brenes, F.M.; García-Ferrer, A.; López-Granados, F. Classification of 3D Point Clouds Using Color Vegetation Indices for Precision Viticulture and Digitizing Applications. Remote Sens. 2020, 12, 317. [Google Scholar] [CrossRef] [Green Version]
- Smit, J.L.; Sithole, G.; Strever, A.E. Vine Signal Extraction—an Application of Remote Sensing in Precision Viticulture. S. Afr. J. Enol. Vitic. 2016, 31. [Google Scholar] [CrossRef] [Green Version]
- Puletti, N.; Perria, R.; Storchi, P. Unsupervised Classification of Very High Remotely Sensed Images for Grapevine Rows Detection. Eur. J. Remote Sens. 2014, 47, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Comba, L.; Gay, P.; Primicerio, J.; Ricauda Aimonino, D. Vineyard Detection from Unmanned Aerial Systems Images. Comput. Electron. Agric. 2015, 114, 78–87. [Google Scholar] [CrossRef]
- Nolan, A.P.; Park, S.; O’Connell, M.; Fuentes, S.; Ryu, D.; Chung, H. Automated Detection and Segmentation of Vine Rows Using High Resolution UAS Imagery in a Commercial Vineyard. In Proceedings of the MODSIM2015, 21st International Congress on Modelling and Simulation; Modelling and Simulation Society of Australia and New Zealand, Gold Coast, HongKong, China, 25–29 November 2015. [Google Scholar]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Bessa, J.; Sousa, A.; Peres, E.; Morais, R.; Sousa, J.J. Vineyard Properties Extraction Combining UAS-Based RGB Imagery with Elevation Data. Int. J. Remote Sens. 2018, 39, 5377–5401. [Google Scholar] [CrossRef]
- Cinat, P.; Di Gennaro, S.F.; Berton, A.; Matese, A. Comparison of Unsupervised Algorithms for Vineyard Canopy Segmentation from UAV Multispectral Images. Remote Sens. 2019, 11, 1023. [Google Scholar] [CrossRef] [Green Version]
- Primicerio, J.; Caruso, G.; Comba, L.; Crisci, A.; Gay, P.; Guidoni, S.; Genesio, L.; Ricauda Aimonino, D.; Vaccari, F.P. Individual Plant Definition and Missing Plant Characterization in Vineyards from High-Resolution UAV Imagery. Eur. J. Remote Sens. 2017, 50, 179–186. [Google Scholar] [CrossRef]
- Baofeng, S.; Jinru, X.; Chunyu, X.; Yulin, F.; Yuyang, S.; Fuentes, S. Digital Surface Model Applied to Unmanned Aerial Vehicle Based Photogrammetry to Assess Potential Biotic or Abiotic Effects on Grapevine Canopies. Biol Eng. 2016, 9, 12. [Google Scholar]
- Pichon, L.; Leroux, C.; Macombe, C.; Taylor, J.; Tisseyre, B. What Relevant Information Can Be Identified by Experts on Unmanned Aerial Vehicles’ Visible Images for Precision Viticulture? Precis. Agric. 2019, 20, 278–294. [Google Scholar] [CrossRef]
- Hall, A.; Lamb, D.W.; Holzapfel, B.; Louis, J. Optical Remote Sensing Applications in Viticulture—a Review. Aust. J. Grape Wine Res. 2002, 8, 36–47. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Watson, C. Development of an Unmanned Aerial Vehicle (UAV) for Hyper Resolution Vineyard Mapping Based on Visible, Multispectral, and Thermal Imagery. In Proceedings of the 34th International symposium on remote sensing of environment, Sydney, Australia, 10–15 April 2011; p. 4. [Google Scholar]
- Schut, A.G.T.; Traore, P.C.S.; Blaes, X.; de By, R.A. Assessing Yield and Fertilizer Response in Heterogeneous Smallholder Fields with UAVs and Satellites. Field Crops Res. 2018, 221, 98–107. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Torres-Sánchez, J.; López-Granados, F.; Borra-Serrano, I.; Peña, J.M. Assessing UAV-Collected Image Overlap Influence on Computation Time and Digital Surface Model Accuracy in Olive Orchards. Precis. Agric. 2018, 19, 115–133. [Google Scholar] [CrossRef]
- Matese, A.; Capraro, F.; Primicerio, J.; Gualato, G.; Gennaro, S.F.D.; Agati, G. Mapping of Vine Vigor by UAV and Anthocyanin Content by a Non- Destructive Fluorescence Technique. In Precision Agriculture’13; Wageningen Academic Publishers: Wageningen, The Netherlands, 2013. [Google Scholar]
- Zarco-Tejada, P.J.; Guillén-Climent, M.L.; Hernández-Clemente, R.; Catalina, A.; González, M.R.; Martín, P. Estimating Leaf Carotenoid Content in Vineyards Using High Resolution Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle (UAV). Agric. For. Meteorol. 2013, 171–172, 281–294. [Google Scholar] [CrossRef] [Green Version]
- Primicerio, J.; Matese, A.; Gennaro, S.F.D.; Albanese, L.; Guidoni, S.; Gay, P. Development of an Integrated, Low-Cost and Open-Source System for Precision Viticulture: From UAV to WSN. In Proceedings of the EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation, Turin, Italy, 24–27 June 2013. [Google Scholar]
- Mathews, A.J. Object-Based Spatiotemporal Analysis of Vine Canopy Vigor Using an Inexpensive Unmanned Aerial Vehicle Remote Sensing System. J. Appl. Remote Sens. 2014, 8, 085199. [Google Scholar] [CrossRef]
- Rey-Caramés, C.; Diago, M.; Martín, M.; Lobo, A.; Tardaguila, J. Using RPAS Multi-Spectral Imagery to Characterise Vigour, Leaf Development, Yield Components and Berry Composition Variability within a Vineyard. Remote Sens. 2015, 7, 14458–14481. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Di Gennaro, S.F.; Miranda, C.; Berton, A.; Santesteban, L.G. Evaluation of Spectral-Based and Canopy-Based Vegetation Indices from UAV and Sentinel 2 Images to Assess Spatial Variability and Ground Vine Parameters. Adv. Anim. Biosci. 2017, 8, 817–822. [Google Scholar] [CrossRef]
- Caruso, G.; Tozzini, L.; Rallo, G.; Primicerio, J.; Moriondo, M.; Palai, G.; Gucci, R. Estimating Biophysical and Geometrical Parameters of Grapevine Canopies (‘Sangiovese’) by an Unmanned Aerial Vehicle (UAV) and VIS-NIR Cameras. VITIS J. Grapevine Res. 2017, 63–70. [Google Scholar] [CrossRef]
- Romboli, Y.; Di Gennaro, S.F.; Mangani, S.; Buscioni, G.; Matese, A.; Genesio, L.; Vincenzini, M. Vine Vigour Modulates Bunch Microclimate and Affects the Composition of Grape and Wine Flavonoids: An Unmanned Aerial Vehicle Approach in a Sangiovese Vineyard in Tuscany: Vine Vigour Affects Grape and Wine Flavonoids. Aust. J. Grape Wine Res. 2017, 23, 368–377. [Google Scholar] [CrossRef]
- Matese, A.; Di Gennaro, S. Practical Applications of a Multisensor UAV Platform Based on Multispectral, Thermal and RGB High Resolution Images in Precision Viticulture. Agriculture 2018, 8, 116. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Marques, P.; Adão, T.; Guimarães, N.; Sousa, A.; Peres, E.; Sousa, J.J. Vineyard Variability Analysis through UAV-Based Vigour Maps to Assess Climate Change Impacts. Agronomy 2019, 9, 581. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Di Gennaro, S.F.; Santesteban, L.G. Methods to Compare the Spatial Variability of UAV-Based Spectral and Geometric Information with Ground Autocorrelated Data. A Case of Study for Precision Viticulture. Comput. Electron. Agric. 2019, 162, 931–940. [Google Scholar] [CrossRef]
- Pádua, L.; Adão, T.; Sousa, A.; Peres, E.; Sousa, J.J. Individual Grapevine Analysis in a Multi-Temporal Context Using UAV-Based Multi-Sensor Imagery. Remote Sens. 2020, 12, 139. [Google Scholar] [CrossRef] [Green Version]
- Yuan, G.; Luo, Y.; Sun, X.; Tang, D. Evaluation of a Crop Water Stress Index for Detecting Water Stress in Winter Wheat in the North China Plain. Agric. Water Manag. 2004, 64, 29–40. [Google Scholar] [CrossRef]
- García-Tejero, I.F.; Costa, J.M.; Egipto, R.; Durán-Zuazo, V.H.; Lima, R.S.N.; Lopes, C.M.; Chaves, M.M. Thermal Data to Monitor Crop-Water Status in Irrigated Mediterranean Viticulture. Agric. Water Manag. 2016, 176, 80–90. [Google Scholar] [CrossRef]
- Baluja, J.; Diago, M.P.; Balda, P.; Zorer, R.; Meggio, F.; Morales, F.; Tardaguila, J. Assessment of Vineyard Water Status Variability by Thermal and Multispectral Imagery Using an Unmanned Aerial Vehicle (UAV). Irrig. Sci. 2012, 30, 511–522. [Google Scholar] [CrossRef]
- Bellvert, J.; Zarco-Tejada, P.J.; Girona, J.; Fereres, E. Mapping Crop Water Stress Index in a ‘Pinot-Noir’ Vineyard: Comparing Ground Measurements with Thermal Remote Sensing Imagery from an Unmanned Aerial Vehicle. Precis. Agric. 2014, 15, 361–376. [Google Scholar] [CrossRef]
- Sepúlveda-Reyes, D.; Ingram, B.; Bardeen, M.; Zúñiga, M.; Ortega-Farías, S.; Poblete-Echeverría, C. Selecting Canopy Zones and Thresholding Approaches to Assess Grapevine Water Status by Using Aerial and Ground-Based Thermal Imaging. Remote Sens. 2016, 8, 822. [Google Scholar] [CrossRef] [Green Version]
- Santesteban, L.G.; Di Gennaro, S.F.; Herrero-Langreo, A.; Miranda, C.; Royo, J.B.; Matese, A. High-Resolution UAV-Based Thermal Imaging to Estimate the Instantaneous and Seasonal Variability of Plant Water Status within a Vineyard. Agric. Water Manag. 2017, 183, 49–59. [Google Scholar] [CrossRef]
- Poblete, T.; Ortega-Farías, S.; Moreno, M.; Bardeen, M. Artificial Neural Network to Predict Vine Water Status Spatial Variability Using Multispectral Information Obtained from an Unmanned Aerial Vehicle (UAV). Sensors 2017, 17, 2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poblete, T.; Ortega-Farías, S.; Ryu, D. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Sensors 2018, 18, 397. [Google Scholar] [CrossRef] [Green Version]
- Tucci, G.; Parisi, E.; Castelli, G.; Errico, A.; Corongiu, M.; Sona, G.; Viviani, E.; Bresci, E.; Preti, F. Multi-Sensor UAV Application for Thermal Analysis on a Dry-Stone Terraced Vineyard in Rural Tuscany Landscape. ISPRS Int. J. Geo-Inf. 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Mathews, A.; Jensen, J. Visualizing and Quantifying Vineyard Canopy LAI Using an Unmanned Aerial Vehicle (UAV) Collected High Density Structure from Motion Point Cloud. Remote Sens. 2013, 5, 2164–2183. [Google Scholar] [CrossRef] [Green Version]
- Kalisperakis, I.; Stentoumis, C.; Grammatikopoulos, L.; Karantzalos, K. Leaf Area Index Estimation In Vineyards From Uav Hyperspectral Data, 2d Image Mosaics And 3d Canopy Surface Models. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 299–303. [Google Scholar] [CrossRef] [Green Version]
- Pádua, L.; Marques, P.; Hruška, J.; Adão, T.; Peres, E.; Morais, R.; Sousa, J. Multi-Temporal Vineyard Monitoring through UAV-Based RGB Imagery. Remote Sens. 2018, 10, 1907. [Google Scholar] [CrossRef] [Green Version]
- Ballesteros, R.; Ortega, J.F.; Hernández, D.; Moreno, M.Á. Characterization of Vitis Vinifera L. Canopy Using Unmanned Aerial Vehicle-Based Remote Sensing and Photogrammetry Techniques. Am. J. Enol. Vitic. 2015, 66, 120–129. [Google Scholar] [CrossRef]
- Comba, L. Leaf Area Index Evaluation in Vineyards Using 3D Point Clouds from UAV Imagery. Precis. Agric. 2020, 21, 881–896. [Google Scholar] [CrossRef] [Green Version]
- Matese, A.; Di Gennaro, S.F.; Berton, A. Assessment of a Canopy Height Model (CHM) in a Vineyard Using UAV-Based Multispectral Imaging. Int. J. Remote Sens. 2017, 38, 2150–2160. [Google Scholar] [CrossRef]
- Pichon, L.; Ducanchez, A.; Fonta, H.; Tisseyre, B. Quality of Digital Elevation Models Obtained from Unmanned Aerial Vehicles for Precision Viticulture. OENO One 2016, 50, doi. [Google Scholar] [CrossRef] [Green Version]
- de Castro, A.; Jiménez-Brenes, F.; Torres-Sánchez, J.; Peña, J.; Borra-Serrano, I.; López-Granados, F. 3-D Characterization of Vineyards Using a Novel UAV Imagery-Based OBIA Procedure for Precision Viticulture Applications. Remote Sens. 2018, 10, 584. [Google Scholar] [CrossRef] [Green Version]
- Ronchetti, G.; Pagliari, D.; Sona, G. DTM Generation Through UAV Survey With a Fisheye Camera On a Vineyard. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-2, 983–989. [Google Scholar] [CrossRef] [Green Version]
- Ghiani, L.; Sassu, A.; Lozano, V.; Brundu, G.; Piccirilli, D.; Gambella, F. Use of UAVs and Canopy High Model Applied on a Time Scale in the Vineyard. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production: International Mid-Term Conference 2019 of the Italian Association of Agricultural Engineering (AIIA); Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switherlands, 2020; Volume 67, pp. 837–844. ISBN 978-3-030-39298-7. [Google Scholar]
- Burgos, S.; Mota, M.; Noll, D.; Cannelle, B. Use Of Very High-Resolution Airborne Images To Analyse 3D Canopy Architecture Of a Vineyard. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-3/W3, 399–403. [Google Scholar] [CrossRef] [Green Version]
- Weiss, M.; Baret, F. Using 3D Point Clouds Derived from UAV RGB Imagery to Describe Vineyard 3D Macro-Structure. Remote Sens. 2017, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Comba, L.; Biglia, A.; Aimonino, D.R.; Barge, P.; Tortia, C.; Gay, P. 2D and 3D Data Fusion for Crop Monitoring in Precision Agriculture. In Proceedings of the 2019 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Portici, Italy, 24–26 October 2019; pp. 62–67. [Google Scholar]
- Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Gay, P. Unsupervised Detection of Vineyards by 3D Point-Cloud UAV Photogrammetry for Precision Agriculture. Comput. Electron. Agric. 2018, 155, 84–95. [Google Scholar] [CrossRef]
- Comba, L.; Zaman, S.; Biglia, A.; Ricauda Aimonino, D.; Dabbene, F.; Gay, P. Semantic Interpretation and Complexity Reduction of 3D Point Clouds of Vineyards. Biosyst. Eng. 2020, 197, 216–230. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Battiston, E.; Di Marco, S.; Facini, O.; Matese, A.; Nocentini, M.; Palliotti, A.; Mugnai, L. Unmanned Aerial Vehicle (UAV)-Based Remote Sensing to Monitor Grapevine Leaf Stripe Disease within a Vineyard Affected by Esca Complex. Phytopathol. Mediterr. 2016, 55. [Google Scholar] [CrossRef]
- Albetis, J.; Duthoit, S.; Guttler, F.; Jacquin, A.; Goulard, M.; Poilvé, H.; Féret, J.-B.; Dedieu, G. Detection of Flavescence Dorée Grapevine Disease Using Unmanned Aerial Vehicle (UAV) Multispectral Imagery. Remote Sens. 2017, 9, 308. [Google Scholar] [CrossRef] [Green Version]
- del-Campo-Sanchez, A.; Ballesteros, R.; Hernandez-Lopez, D.; Ortega, J.F.; Moreno, M.A.; on behalf of Agroforestry and Cartography Precision Research Group. Quantifying the Effect of Jacobiasca Lybica Pest on Vineyards with UAVs by Combining Geometric and Computer Vision Techniques. PLoS ONE 2019, 14, e0215521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damalas, C.A.; Eleftherohorinos, I.G. Pesticide Exposure, Safety Issues, and Risk Assessment Indicators. Int. J. Environ. Res. Public. Health 2011, 8, 1402–1419. [Google Scholar] [CrossRef] [PubMed]
- Campos, J.; Llop, J.; Gallart, M.; García-Ruiz, F.; Gras, A.; Salcedo, R.; Gil, E. Development of Canopy Vigour Maps Using UAV for Site-Specific Management during Vineyard Spraying Process. Precis. Agric. 2019, 20, 1136–1156. [Google Scholar] [CrossRef] [Green Version]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of Satellite and UAV-Based Multispectral Imagery for Vineyard Variability Assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.; Gallart, M.; Llop, J.; Ortega, P.; Salcedo, R.; Gil, E. On-Farm Evaluation of Prescription Map-Based Variable Rate Application of Pesticides in Vineyards. Agronomy 2020, 10, 102. [Google Scholar] [CrossRef] [Green Version]
- Boon, M.A.; Drijfhout, A.P.; Tesfamichael, S. Comparison Of a Fixed-Wing And Multi-Rotor UAV For Environmental Mapping Applications: A Case Study. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry Applications of UAVs in Europe: A Review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- de Miguel Molina, B.; Segarra Oña, M. The Drone Sector in Europe. In Ethics and Civil Drones; de Miguel Molina, M., Santamarina Campos, V., Eds.; SpringerBriefs in Law; Springer International Publishing: Cham, Switherlands, 2018; pp. 7–33. ISBN 978-3-319-71086-0. [Google Scholar]
- Poni, S.; Gatti, M. Fisiologia e viticoltura di precisione basata su dati da Remote Sensing: Quale grado di parentela? Italus Hortus 2013, 16, 15–30. [Google Scholar]
- Ferrer, M.; Echeverría, G.; Gonzalez-Neves, G. Influence of the Microclimate Defined by the Training System on the Vineyard Behaviour and the Oenological Quality of Merlot Grapes. Int. J. Agric. Sci. Nat. Resour. 2015, 2, 95–108. [Google Scholar] [CrossRef]
- Noirault, A.; Achtziger, R.; Richert, E.; Goldberg, V.; Köstner, B. Modelling the Microclimate of a Saxonian Terraced Vineyard with ENVI-Met. Freib. Ecol. Online 2020, 7, 21–41. [Google Scholar]
- Andreoli, V.; Bertoni, D.; Cassardo, C.; Cassardo, C.; Francone, C.; Spanna, F. Analysis of Micrometeorological Conditions in Piedmontese Vineyards. Anal. Micrometeorological Cond. Piedmontese Vineyards 2018, 1145, 27–040. [Google Scholar] [CrossRef]
- Matese, A.; Crisci, A.; Di Gennaro, F.S.; Fiorillo, E.; Primicerio, J.; Toscano, P.; Vaccari, F.P.; Di Blasi, S.; Genesio, L. Influence of Canopy Management Practices on Vineyard Microclimate: Definition of New Microclimatic Indices. Am. J. Enol. Vitic. 2012, 63, 424–430. [Google Scholar] [CrossRef]
- Barbieri, L.; Kral, S.; Bailey, S.; Frazier, A.; Jacob, J.; Reuder, J.; Brus, D.; Chilson, P.; Crick, C.; Detweiler, C.; et al. Intercomparison of Small Unmanned Aircraft System (SUAS) Measurements for Atmospheric Science during the LAPSE-RATE Campaign. Sensors 2019, 19, 2179. [Google Scholar] [CrossRef] [Green Version]
- Bramley, R.G.V.; Trought, M.C.T.; Praat, J.-P. Vineyard Variability in Marlborough, New Zealand: Characterising Variation in Vineyard Performance and Options for the Implementation of Precision Viticulture. Aust. J. Grape Wine Res. 2011, 17, 72–78. [Google Scholar] [CrossRef]
- Gennaro, S.F.D.; Matese, A.; Gioli, B.; Toscano, P.; Zaldei, A.; Palliotti, A.; Genesio, L. Multisensor Approach to Assess Vineyard Thermal Dynamics Combining High-Resolution Unmanned Aerial Vehicle (UAV) Remote Sensing and Wireless Sensor Network (WSN) Proximal Sensing. Sci. Hortic. 2017, 221, 83–87. [Google Scholar] [CrossRef]
- Gatti, M.; Dosso, P.; Maurino, M.; Merli, M.; Bernizzoni, F.; José Pirez, F.; Platè, B.; Bertuzzi, G.; Poni, S. MECS-VINE®: A New Proximal Sensor for Segmented Mapping of Vigor and Yield Parameters on Vineyard Rows. Sensors 2016, 16, 2009. [Google Scholar] [CrossRef] [Green Version]
- Baluja, J.; Diago, M.P.; Goovaerts, P.; Tardaguila, J. Spatio-temporal Dynamics of Grape Anthocyanin Accumulation in a Tempranillo Vineyard Monitored by Proximal Sensing. Aust. J. Grape Wine Res. 2012, 18, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Hassan-Esfahani, L.; Torres-Rua, A.; Jensen, A.; McKee, M. Assessment of Surface Soil Moisture Using High-Resolution Multi-Spectral Imagery and Artificial Neural Networks. Remote Sens. 2015, 7, 2627–2646. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Sun, Y.; Hou, F. Using UAV Visible Images to Estimate the Soil Moisture of Steppe. Water 2020, 12, 2334. [Google Scholar] [CrossRef]
- Luo, W. UAV Based Soil Moisture Remote Sensing in a Karst Mountainous Catchment. Catena 2019, 174, 478–489. [Google Scholar] [CrossRef]
- Ding, J. Combining UAV-Based Hyperspectral Imagery and Machine Learning Algorithms for Soil Moisture Content Monitoring. PeerJ 2019, 27, e6926. [Google Scholar]
- Argolo dos Santos, R.; Chartuni Mantovani, E.; Filgueiras, R.; Inácio Fernandes-Filho, E.; Cristielle Barbosa da Silva, A.; Peroni Venancio, L. Actual Evapotranspiration and Biomass of Maize from a Red–Green-Near-Infrared (RGNIR) Sensor on Board an Unmanned Aerial Vehicle (UAV). Water 2020, 12, 2359. [Google Scholar] [CrossRef]
- Thorp, K.; Thompson, A.; Harders, S.; French, A.; Ward, R. High-Throughput Phenotyping of Crop Water Use Efficiency via Multispectral Drone Imagery and a Daily Soil Water Balance Model. Remote Sens. 2018, 10, 1682. [Google Scholar] [CrossRef] [Green Version]
- Bonfante, A.; Monaco, E.; Manna, P.; De Mascellis, R.; Basile, A.; Buonanno, M.; Cantilena, G.; Esposito, A.; Tedeschi, A.; De Michele, C.; et al. LCIS DSS—An Irrigation Supporting System for Water Use Efficiency Improvement in Precision Agriculture: A Maize Case Study. Agric. Syst. 2019, 176, 102646. [Google Scholar] [CrossRef]
- Lopez, C.D.; Giraldo, L.F. Optimization of Energy and Water Consumption on Crop Irrigation Using UAVs via Path Design. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellín, CO, USA, 15–18 October 2019; pp. 1–5. [Google Scholar]
- Gago, J.; Douthe, C.; Coopman, R.E.; Gallego, P.P.; Ribas-Carbo, M.; Flexas, J.; Escalona, J.; Medrano, H. UAVs Challenge to Assess Water Stress for Sustainable Agriculture. Agric. Water Manag. 2015, 153, 9–19. [Google Scholar] [CrossRef]
- Bian, Z.; Roujean, J.-L.; Cao, B.; Du, Y.; Li, H.; Gamet, P.; Fang, J.; Xiao, Q.; Liu, Q. Modeling the Directional Anisotropy of Fine-Scale TIR Emissions over Tree and Crop Canopies Based on UAV Measurements. Remote Sens. Environ. 2021, 252, 112150. [Google Scholar] [CrossRef]
- Kustas, W.P.; Agam, N.; Alfieri, J.G.; McKee, L.G.; Prueger, J.H.; Hipps, L.E.; Howard, A.M.; Heitman, J.L. Below Canopy Radiation Divergence in a Vineyard: Implications on Interrow Surface Energy Balance. Irrig. Sci. 2019, 37, 227–237. [Google Scholar] [CrossRef]
Spectral Range | Sensor Brand and Model | UAS Typology | UAS Brand/Model | Surface (ha) | Vineyard Cultivar | Objectives | Year | References |
---|---|---|---|---|---|---|---|---|
R-G-B-NIR-TIR | Canon 550D | Hexacopter | Mikrokopter He0xa-II | 2 | NA | variability monitoring | 2011 | [52] |
R-G-B-NIR-TIR | MCA-6 Tetracam A40 M FLIR | Quadcopter | NA | 5 | Tempranillo | variability monitoring | 2012 | [70] |
R-G-B-NIR-RE hyperspectral | Hyperspec VNIR | Fixed wings | mX-SIGHT | NA | Tempranillo | variability monitoring | 2013 | [57] |
R-G-B | Canon PowerShot A480 | Quadcopter | Hawkeye II | 1.9 | Tempranillo | rows geometry estimations | 2013 | [77] |
R-G-B-NIR | ADC-lite camera Tetracam | Hexacopter | Mikrokopter Hexa-II | NA | NA | crop features detection | 2013 | [34] |
R-G-NIR | ADC-lite camera Tetracam | Octocopter | Mikrokopter Okto | 0.5 | Nerello Mascalese | variability monitoring | 2013 | [56] |
R-G-B-NIR | ADC-lite camera Tetracam | Hexacopter | Mikrokopter Hexa-II | 1.2 | Cabernet Sauvignon | variability monitoring | 2013 | [58] |
TIR | Miricle 307 K | Fixed wings | Viewer | 11 | Pinot noir | variability monitoring | 2014 | [71] |
R-G-B-NIR | Canon PowerShot A480 (Canon U.S.A, New York, NY, USA) | Hexacopter | Hawkeye | 1.9 | Tempranillo | variability monitoring | 2014 | [59] |
NIR | NA | Fixed wings | Sensefly eBee | 14 | NA | crop features detection | 2015 | [45] |
R-G-B-NIR | MCA 6 Tetracam | Quadcopter | RPAS Md4-1000 | 5 | Tempranillo | variability monitoring | 2015 | [60] |
R-G-B-NIR | GP Hero 3 and Micro-Hyperspec A-Series (Headwall Photonics, MA, USA) | Octocopter | OnyxStar BAT-F8 | NA | Nemea-Agiorgitiko | rows geometry estimations | 2015 | [78] |
R-G-B-NIR | ADC-lite camera Tetracam | Hexacopter | Mikrokopter Hexa-II | NA | NA | crop features detection | 2015 | [44] |
R-G-B | Pentax A40 | NA | NA | 2.5 | Cencibel-Airén | rows geometry estimations | 2015 | [80] |
R-G-B | Canon IXUS 220 HS | Fixed wings | senseFly Swinglet CAM | 12 | NA | rows geometry estimations | 2015 | [87] |
TIR | EasIR-9 | Quadcopter | HKPilotMega 2.7 | NA | Carménère | variability monitoring | 2016 | [72] |
R-G-B-NIR | ADC-Snap Tetracam | Octocopter | Mikrokopter Okto | 2.4 | NA | variability monitoring | 2016 | [82] |
R-G-B | NA | Multirotor-Fixed wings | NA | 4 | Languedoc | rows geometry estimations | 2016 | [83] |
R-G-B | NA | Quadcopter | DJI Phantom 2 | NA | Cabernet Sauvignon | crop features detection | 2016 | [49] |
R-G-NIR | ADC-lite camera Tetracam | Octocopter | Mikrokopter Okto | 1.2 | Cabernet Sauvignon | disease detection | 2016 | [92] |
TIR | FLIR TAU II 320 | Octocopter | Mikrokopter Okto | 7.5 | NA | variability monitoring | 2016 | [73] |
R-G-B-NIR | ADC-Snap Tetracam | Octocopter | Mikrokopter Okto | 8.5 | tempranillo | variability monitoring | 2017 | [61] |
R-G-B | Lumix DMC-FT4 | Quadcopter | NA | NA | Carménère | crop features detection | 2017 | [35] |
R-G-B-NIR | Coolpix P7700-ADC-lite camera Tetracam | Octocopter | DJI s1000 | 0.5 | Sagiovese | variability monitoring | 2017 | [62] |
R-G-B-NIR-RE | RedEDGE Micasense | Fixed wings | long range DT-18 | 3.1 | Sauvignon–Colombard -Gamay-Duras | disease detection | 2017 | [93] |
R-G-B | Coolpix P7700 camera | Octocopter | DJI s1000 | NA | Sangiovese | crop features detection | 2017 | [48] |
R-G-B | DMC-GF3 | Fixed wings | NA | 23.2 | Nebbiolo | rows geometry estimations | 2017 | [88] |
R-G-B-NIR-RE | MCA-6 Tetracam | Octocopter | Mikrokopter Okto | NA | Carmeneré | variability monitoring | 2017 | [74] |
R-G-NIR | ADC-lite camera Tetracam | Octocopter | Mikrokopter Okto | 0.4 | Sangiovese-Petit Verdot– Cabernet Sauvignon | variability monitoring | 2017 | [63] |
R-G-B | Olympus PEN E-PM1 | Quadcopter | MD4-1000 | 1.1 | Merlot-Albariño-Chardonnay | rows geometry estimations | 2018 | [84] |
R-G-B-NIR-RE | Parrot Sequoia | NA | NA | 2.5 | NA | rows geometry estimations | 2018 | [90] |
R-G-B-NIR-TIR | Canon EOSM10-tetracam ADC Snap -FLIR TAU II 320 | Hexacopter | Mikrokopter | 10.3 | Sangiovese | variability monitoring | 2018 | [64] |
R-G-B | DJI FC6310 | Quadcopter | DJI Phantom 4 | NA | NA | crop features detection | 2018 | [46] |
R-G-B-NIR- Hyp. | Canon 5DsR-R0Edge MicaSense Nano-Hyperspec | Hexacopter | S800 EVO Hexacopter | 11.7 | Chardonnay-Pinot Noir Shiraz-Merlot-Cabernet Sauvignon-Roussanne | disease detection | 2018 | [95] |
R-G-B | DJI FC6310 | Quadcopter | DJI Phantom 4 | 0.9 | NA | rows geometry estimations | 2018 | [79] |
R-G-B-NIR-TIR | Micro MCA-6 Tetracam-FLIR TAU2 | Octocopter | Mikrokopter Okto | NA | Cabernet Sauvignon | variability monitoring | 2018 | [75] |
R-G-B-NIR-RE | Parrot Sequoia | NA | NA | 1.5 | Nebbiolo | rows geometry estimations | 2019 | [89] |
R-G-B | SONY α ILCE-5100L | Quadcopter | microUAV md4-1000 | 5 | Syrah | disease detection | 2019 | [94] |
R-G-B-NIR-RE | Parrot Sequoia | NA | NA | 2.5 | Nebbiolo | prescription mapping | 2019 | [98] |
R-G-B-NIR | ADC-Snap Tetracam | Octocopter | Mikrokopter Okto | 7.5 | tempranillo | variability monitoring | 2019 | [66] |
R-G-B-NIR | Olympus PEN E-PM1-SONY ILCE-6000 | Quadcopter | MD4-1000 | 1 | Pedro Xime’nez | crop features detection | 2019 | [39] |
R-G-B-TIR | DJI FC6310-Optris PI450 | Quadcopter | DJI Phantom 4 pro | 1.8 | Sangiovese –Petit Verdot – Cabernet Sauvignon | variability monitoring | 2019 | [76] |
R-G-B-NIR-RE | RedEDGE Micasense | Hexacopter | UAVHEXA | 5 | Merlot | prescription mapping | 2019 | [97] |
R-G-B-NIR-RE-TIR | Parrot Sequoia-thermoMAP | Quadcopter-Fixed wings | DJI Phantom 4-Sensefly eBee | 0.3 | Malvasia Fina | variability monitoring | 2019 | [65] |
R-G-B | NA | multirotor | NA | 11.3 | Syrah-Grenache | crop features detection | 2019 | [50] |
R-G-B-NIR | ADC-Snap Tetracam-ThermalCapture FUSION | Hexacopter | Mikrokopter | 2.4 | Barbera-Sangiovese | crop features detection | 2019 | [47] |
R-G-B | Olympus PEN E-PM1 | Quadcopter | MD4-1000 | 0.9 | Merlot and Albariño | scrop features detection | 2020 | [41] |
R-G-B | NA | Quadcopter | Parrot Bebop 2 | 1 | NA | rows geometry estimations estimations | 2020 | [85] |
R-G-B-NIR-RE | RedEDGE Micasense | Hexacopter | UAVHEXA | 17.7 | Chardonnay-Merlot-Cabernet Sauvignon | prescription mapping | 2020 | [99] |
R-G-NIR-RE | Mapir survey 3 | Quadcopter | DJI Phantom 4 pro | 1.3 | Cagnulari | rows geometry estimations estimations | 2020 | [86] |
R-G-B-NIR-RE-TIR | Parrot Sequoia–thermoMAP senseFly | Quadcopter-Fixed wings | DJI Phantom 4 | 2.1 | Alvarinho-Loureiro | variability monitoring | 2020 | [67] |
R-G-B-NIR-RE | Parrot Sequoia | NA | NA | 2.5 | Nebbiolo | rows geometry estimations | 2020 | [91] |
R-G-B-NIR-RE | Parrot Sequoia | NA | NA | 2.5 | Nebbiolo | rows geometry estimations | 2020 | [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sassu, A.; Gambella, F.; Ghiani, L.; Mercenaro, L.; Caria, M.; Pazzona, A.L. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors 2021, 21, 956. https://doi.org/10.3390/s21030956
Sassu A, Gambella F, Ghiani L, Mercenaro L, Caria M, Pazzona AL. Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors. 2021; 21(3):956. https://doi.org/10.3390/s21030956
Chicago/Turabian StyleSassu, Alberto, Filippo Gambella, Luca Ghiani, Luca Mercenaro, Maria Caria, and Antonio Luigi Pazzona. 2021. "Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture" Sensors 21, no. 3: 956. https://doi.org/10.3390/s21030956
APA StyleSassu, A., Gambella, F., Ghiani, L., Mercenaro, L., Caria, M., & Pazzona, A. L. (2021). Advances in Unmanned Aerial System Remote Sensing for Precision Viticulture. Sensors, 21(3), 956. https://doi.org/10.3390/s21030956