Novel Applications in Controlled Drug Delivery Systems by Integrating Osmotic Pumps and Magnetic Nanoparticles
Abstract
:1. Introduction
2. Osmotic Pumps
3. Osmotic Pump Operation: The Forward Osmosis Phenomenon
4. Magnetic Nanoparticles as Draw Solutions in Forward Osmosis
5. Conceptual Proposal of Systems Based on Osmotic Pumps and MNPs
5.1. Wearable Device for Drug Delivery
5.2. Extracorporeal Device for Drug Delivery
5.3. Considerations in the Design of Osmotically Driven Drug Delivery Systems
5.4. Integration in Pharmaceutical Manufacturing
6. Outlook and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CP | Concentration polarization |
CPOP | Controlled porosity osmotic pump |
DS | Draw solution |
ECP | External concentration polarization |
EOP | Elementary osmotic pump |
FO | Forward osmosis |
FS | Feed solution |
gMH | g m−2 h−1 |
HGMS | High gradient magnetic separation |
HLP | Higuchi–Leeper pump |
HTP | Higuchi–Theeuwes pump |
ICP | Internal concentration polarization |
LMH | L m−2 h−1 |
MD | Membrane distillation |
MMS | Micro magnetic separator |
MNP | Magnetic nanoparticle |
NCD | Noncommunicable or chronic disease |
NP | Nanoparticle |
OGMS | Open gradient magnetic separation |
OSFO | Organic solvent forward osmosis |
PPOP | Push–pull osmotic pump |
RNP | Rose–Nelson pump |
RO | Reverse osmosis |
RSF | Reverse solute flux |
UF | Ultrafiltration |
References
- World Health Organization Noncommunicable Diseases. Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 24 January 2024).
- World Health Organization. Access to NCD Medicines: Emergent Issues during the COVID-19 Pandemic and Key Structural Factors; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- United Nations Chronic Diseases Taking ‘Immense and Increasing Toll on Lives’, Warns WHO. Available online: https://news.un.org/en/story/2023/05/1136832 (accessed on 24 January 2024).
- United Nations Access to Chronic Disease Medication ‘Still out of Reach for Many’: WHO Report. Available online: https://news.un.org/en/story/2023/03/1134902 (accessed on 24 January 2024).
- The Global Goals Good Health and Well-Being. Available online: https://www.globalgoals.org/goals/3-good-health-and-well-being/ (accessed on 24 January 2024).
- García-Merino, B.; Bringas, E.; Ortiz, I. Fast and Reliable Analysis of PH-Responsive Nanocarriers for Drug Delivery Using Microfluidic Tools. Int. J. Pharm. 2023, 643, 123232. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Prioritizing Medical Devices. Available online: https://www.who.int/activities/prioritizing-medical-devices (accessed on 14 February 2024).
- European Commission Medical Devices—Sector. Overview. Available online: https://health.ec.europa.eu/medical-devices-sector/overview_en (accessed on 14 February 2024).
- Akhtar, M.F.; Ashraf, H.; Uzair, M.; Ahmad, S.; Rasul, A.; Abbas, G.; Shah, S.; Hanif, M. Development of Leachable Enalapril Tablets by Controlled Porosity Osmotic Pump Technique; a Unique Approach to Enhance Its Sustained Release Effect. J. Coat. Technol. Res. 2022, 19, 497–507. [Google Scholar] [CrossRef]
- Monton, C.; Kulvanich, P. Push-Pull Osmotic Pumps Using Crosslinked Hard Gelatin Capsule as a Structural Assembly for Delivery of Drugs with Different Water Solubilities. J. Pharm. Innov. 2022, 17, 791–805. [Google Scholar] [CrossRef]
- Joshi, M.; Gokhale, C.; Kenjale, P.; Pokharkar, V. Optimization of Diltiazem Hydrochloride Osmotic Formulation Using QBD Approach. Braz. J. Pharm. Sci. 2022, 58, e19779. [Google Scholar] [CrossRef]
- Gundu, R.; Pekamwar, S.; Shelke, S.; Kulkarni, D.; Gadade, D.; Shep, S. Development and Pharmacokinetic Evaluation of Osmotically Controlled Drug Delivery System of Valganciclovir HCl for Potential Application in the Treatment of CMV Retinitis. Drug Deliv. Transl. Res. 2022, 12, 2708–2729. [Google Scholar] [CrossRef]
- Hafiz, M.; Hassanein, A.; Talhami, M.; Al-Ejji, M.; Hassan, M.K.; Hawari, A.H. Magnetic Nanoparticles Draw Solution for Forward Osmosis: Current Status and Future Challenges in Wastewater Treatment. J. Environ. Chem. Eng. 2022, 10, 108955. [Google Scholar] [CrossRef]
- Hassanein, A.; Hafiz, M.A.; Hassan, M.K.; Ba-Abbad, M.M.; AL-Ejji, M.; Alfahel, R.; Mahmoud, K.A.; Talhami, M.; Hawari, A.H. Developing Sustainable Draw Solute for Forward Osmosis Process Using Poly(Amidoamine) Dendrimer Coated Magnetic Nanoparticles. Desalination 2023, 564, 116800. [Google Scholar] [CrossRef]
- Ma, D.; Tian, Y.; He, T.; Zhu, X. Preparation of Novel Magnetic Nanoparticles as Draw Solutes in Forward Osmosis Desalination. Chin. J. Chem. Eng. 2022, 46, 223–230. [Google Scholar] [CrossRef]
- Hafiz, M.; Talhami, M.; Ba-Abbad, M.M.; Hawari, A.H. Optimization of Magnetic Nanoparticles Draw Solution for High Water Flux in Forward Osmosis. Water 2021, 13, 3653. [Google Scholar] [CrossRef]
- Rastogi, N.K. Forward Osmosis: Principles, Applications, and Recent Developments. In Current Trends and Future Developments on (Bio-) Membranes; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 3–35. ISBN 9780128167779. [Google Scholar]
- Singh, S.K.; Maiti, A.; Pandey, A.; Jain, N.; Sharma, C. Fouling Limitations of Osmotic Pressure-Driven Processes and Its Remedial Strategies: A Review. J. Appl. Polym. Sci. 2023, 140, e53295. [Google Scholar] [CrossRef]
- Coutant, T.; Cococcetta, C.; Prouillac, C.; Espana, B.; Le Barzic, C.; Arné, P.; Huynh, M. Osmotic Pump Maintains Plasma Concentrations of Meloxicam for 6 Days after Orthopedic Surgery in Pigeons (Columba Livia). Am. J. Vet. Res. 2023, 84, ajvr.22.11.0203. [Google Scholar] [CrossRef] [PubMed]
- Aende, A.; Gardy, J.; Aslam, Z.; Rogers, M.; Edokali, M.; Cespedes, O.; Harbottle, D.; Hassanpour, A. A Novel Highly Osmotic K/Fe3O4/CNF Magnetic Draw Solution for Salty Water Desalination. Desalination 2022, 538, 115903. [Google Scholar] [CrossRef]
- González Fernández, C.; Gómez Pastora, J.; Basauri, A.; Fallanza, M.; Bringas, E.; Chalmers, J.J.; Ortiz, I. Continuous-Flow Separation of Magnetic Particles from Biofluids: How Does the Microdevice Geometry Determine the Separation Performance? Sensors 2020, 20, 3030. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pastora, J.; González-Fernández, C.; Real, E.; Iles, A.; Bringas, E.; Furlani, E.P.; Ortiz, I. Computational Modeling and Fluorescence Microscopy Characterization of a Two-Phase Magnetophoretic Microsystem for Continuous-Flow Blood Detoxification. Lab Chip 2018, 18, 1593–1606. [Google Scholar] [CrossRef]
- Materón, E.M.; Miyazaki, C.M.; Carr, O.; Joshi, N.; Picciani, P.H.S.; Dalmaschio, C.J.; Davis, F.; Shimizu, F.M. Magnetic Nanoparticles in Biomedical Applications: A Review. Appl. Surf. Sci. Adv. 2021, 6, 100163. [Google Scholar] [CrossRef]
- Abedini-Nassab, R.; Pouryosef Miandoab, M.; Şaşmaz, M. Microfluidic Synthesis, Control, and Sensing of Magnetic Nanoparticles: A Review. Micromachines 2021, 12, 768. [Google Scholar] [CrossRef]
- Jajack, A.; Stamper, I.; Gomez, E.; Brothers, M.; Begtrup, G.; Heikenfeld, J. Continuous, Quantifiable, and Simple Osmotic Preconcentration and Sensing within Microfluidic Devices. PLoS ONE 2019, 14, e0210286. [Google Scholar] [CrossRef]
- Zaher, A.; Li, S.; Wolf, K.T.; Pirmoradi, F.N.; Yassine, O.; Lin, L.; Khashab, N.M.; Kosel, J. Osmotically Driven Drug Delivery through Remote-Controlled Magnetic Nanocomposite Membranes. Biomicrofluidics 2015, 9, 054113. [Google Scholar] [CrossRef]
- Ahmed, K.; Shoaib, M.H.; Yousuf, R.I.; Qazi, F.; Anwer, S.; Nasiri, M.I.; Mahmood, Z.A. Use of Opadry® CA—A Cellulose Acetate/Polyethylene Glycol System for Rate-Controlled Osmotic Drug Delivery of Highly Soluble Antispastic Agent Eperisone HCl. Adv. Polym. Technol. 2018, 37, 2730–2742. [Google Scholar] [CrossRef]
- Patel, J.; Parikh, S.; Patel, S. Comprehensive Review on Osmotic Drug Delivery System. World J. Pharm. Res. 2021, 10, 523–550. [Google Scholar]
- Almoshari, Y. Osmotic Pump Drug Delivery Systems—A Comprehensive Review. Pharmaceuticals 2022, 15, 1430. [Google Scholar] [CrossRef] [PubMed]
- Monton, C.; Kulvanich, P. Characterization of Crosslinked Hard Gelatin Capsules for a Structural Assembly of Elementary Osmotic Pump Delivery System. J. Pharm. Investig. 2019, 49, 655–665. [Google Scholar] [CrossRef]
- Gao, S.; Chen, Y.; Hu, R.; Lu, W.; Yu, L.; Chen, J.; Liu, S.; Guo, Y.; Shen, Q.; Wang, B.; et al. Visualized Analysis and Evaluation of Simultaneous Controlled Release of Metformin Hydrochloride and Gliclazide from Sandwiched Osmotic Pump Capsule. Drug Dev. Ind. Pharm. 2020, 46, 1776–1786. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Hanif, M. Leachable Pegylated Cellulose Acetate Complex: A Promising Approach for Controlled Porosity Osmotic Pump Tablets of Captopril. J. Coat. Technol. Res. 2020, 17, 439–446. [Google Scholar] [CrossRef]
- Gundu, R.; Pekamwar, S.; Shelke, S.; Shep, S.; Kulkarni, D. Sustained Release Formulation of Ondansetron HCl Using Osmotic Drug Delivery Approach. Drug Dev. Ind. Pharm. 2020, 46, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Patel, P.; Ladani, B.; Patel, G. Design, Optimization, and Characterization of an in-Situ Pore-Forming System for Controlled Delivery of Paliperidone. Med. Nov. Technol. Devices 2024, 21, 100284. [Google Scholar] [CrossRef]
- Theeuwes, F.; Yum, S.I. Principles of the Design’ and Operation of Generic Osmotic Pumps for the Delivery of Semisolid or Liquid Drug Formulations. Ann. Biomed. Eng. 1976, 4, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Miyoshi, M. Long-Term Constant Subcutaneous Drug Administration. Methods Mol. Biol. 2024, 2766, 31–36. [Google Scholar] [CrossRef]
- Higuchi, T.; Leeper, H.; Theeuwes, F. Osmotic Dispenser with Means for Dispensing Active Agent Responsive to Osmotic Gradient. U.S. Patent 3,995,631, 7 December 1976. [Google Scholar]
- Dépreux, F.; Czech, L.; Young, H.; Richter, C.P.; Zhou, Y.; Whitlon, D.S. Statins Protect Mice from High-Decibel Noise-Induced Hearing Loss. Biomed. Pharmacother. 2023, 163, 114674. [Google Scholar] [CrossRef]
- Basole, C.P.; Nguyen, R.K.; Lamothe, K.; Billis, P.; Fujiwara, M.; Vang, A.G.; Clark, R.B.; Epstein, P.M.; Brocke, S. Treatment of Experimental Autoimmune Encephalomyelitis with an Inhibitor of Phosphodiesterase-8 (PDE8). Cells 2022, 11, 660. [Google Scholar] [CrossRef]
- Wang, L.P.; Han, R.M.; Wu, B.; Luo, M.Y.; Deng, Y.H.; Wang, W.; Huang, C.; Xie, X.; Luo, J. Mst1 Silencing Alleviates Hypertensive Myocardial Injury Associated with the Augmentation of Microvascular Endothelial Cell Autophagy. Int. J. Mol. Med. 2022, 50, 146. [Google Scholar] [CrossRef] [PubMed]
- Saoudi, A.; Fergus, C.; Gileadi, T.; Montanaro, F.; Morgan, J.E.; Kelly, V.P.; Tensorer, T.; Garcia, L.; Vaillend, C.; Muntoni, F.; et al. Investigating the Impact of Delivery Routes for Exon Skipping Therapies in the CNS of DMD Mouse Models. Cells 2023, 12, 908. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration ACTOPLUS MET XR (Pioglitazone and Metformin Hydrochloride-Release) Tablets for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022024s014lbl.pdf (accessed on 25 September 2024).
- Agencia Española de Medicamentos y Productos Sanitarios Adalat Oros 30 mg Comprimidos de Liberación Prolongada. Available online: https://cima.aemps.es/cima/pdfs/es/ft/59538/FT_59538.html.pdf (accessed on 25 September 2024).
- U.S. Food and Drug Administration CONCERTA® (Methylphenidate HCl) Extended-Release Tablets CII. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/021121s049lbl.pdf (accessed on 25 September 2024).
- U.S. Food and Drug Administration DITROPAN XL® (Oxybutynin Chloride) Extended Release Tablets for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/020897s035lbl.pdf (accessed on 25 September 2024).
- Gador ELAFAX® XR 75-ELAFAX® XR 150. Available online: https://www.gador.com.ar/wp-content/uploads/2015/04/ELAFAX-XR-G00076802-04.pdf (accessed on 25 September 2024).
- U.S. Food and Drug Administration GLUCOTROL XL® (Glipizide) Extended Release Tablets for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/020329Orig1s035lbl.pdf (accessed on 25 September 2024).
- U.S. Food and Drug Administration OSMOLEX ERTM (Amantadine) Extended-Release Tablets for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/209410s000lbl.pdf (accessed on 25 September 2024).
- U.S. Food and Drug Administration PROCARDIA XL® (Nifedipine) Extended Release Tablets for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2015/019684s029lbl.pdf (accessed on 25 September 2024).
- du Toit, L.C.; Hulisani Demana, P.; Essop Choonara, Y. A Nano-Enabled Biotinylated Anti-LDL Theranostic System to Modulate Systemic LDL Cholesterol. Int. J. Pharm. 2022, 628, 122258. [Google Scholar] [CrossRef]
- ALZET® Osmotic Pumps ALZET® Technical Tips. Available online: https://www.alzet.com/resources/alzet-technical-tips/#1560367721008-77489434-4a62 (accessed on 22 February 2024).
- Malfeld, K.; Baumhoff, P.; Volk, H.A.; Lenarz, T.; Scheper, V. Local Long-Term Inner Ear Drug Delivery in Normal Hearing Guinea Pig—An Animal Model to Develop Preventive Treatment for Noise-Induced Hearing Loss. Biomolecules 2022, 12, 1427. [Google Scholar] [CrossRef] [PubMed]
- Feger, M.A.; Isaacs, J.; Mallu, S.; Yager, D.; Shall, M.; Patel, G.; Protzuk, O.; Bokkisam, A.S. Follistatin Protein Enhances Satellite Cell Counts in Reinnervated Muscle. J. Brachial Plex. Peripher. Nerve Inj. 2022, 17, e12–e21. [Google Scholar] [CrossRef]
- Katsuki, S.; Koga, J.I.; Matoba, T.; Umezu, R.; Nakashiro, S.; Nakano, K.; Tsutsui, H.; Egashira, K. Nanoparticle-Mediated Delivery of Pitavastatin to Monocytes/Macrophages Inhibits Angiotensin II-Induced Abdominal Aortic Aneurysm Formation in Apoe−/− Mice. J. Atheroscler. Thromb. 2022, 29, 111–125. [Google Scholar] [CrossRef]
- Schwieger, J.; Frisch, A.S.; Rau, T.S.; Lenarz, T.; Hügl, S.; Scheper, V. 3D Printed Cell Culture Chamber for Testing the Effect of Pump-Based Chronic Drug Delivery on Inner Ear Tissue. Biomolecules 2022, 12, 589. [Google Scholar] [CrossRef] [PubMed]
- Vohl, S.; Ban, I.; Drofenik, M.; Buksek, H.; Gyergyek, S.; Petrinic, I.; Hélix-Nielsen, C.; Stergar, J. Microwave Synthesis of Poly(Acrylic) Acid-Coated Magnetic Nanoparticles as Draw Solutes in Forward Osmosis. Materials 2023, 16, 4138. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.J.; Suwaileh, W.A.; Mohammed, A.W.; Hilal, N. Osmotic’s Potential: An Overview of Draw Solutes for Forward Osmosis. Desalination 2018, 434, 100–120. [Google Scholar] [CrossRef]
- Ban, I.; Drofenik, M.; Bukšek, H.; Petrinic, I.; Helix-Nielsen, C.; Vohl, S.; Gyergyek, S.; Stergar, J. Synthesis of Magnetic Nanoparticles with Covalently Bonded Polyacrylic Acid for Use as Forward Osmosis Draw Agents. Environ. Sci. 2023, 9, 442–453. [Google Scholar] [CrossRef]
- Asghar, N.; Nguyen, D.A.; Jang, A. Application of MnFe2O4 Magnetic Silica-Covered Ethylenediaminetetraacetic Acid-Functionalized Nanomaterials to the Draw Solution in Forward Osmosis. Chemosphere 2023, 330, 138735. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Pastora, J.; Xue, X.; Karampelas, I.H.; Bringas, E.; Furlani, E.P.; Ortiz, I. Analysis of Separators for Magnetic Beads Recovery: From Large Systems to Multifunctional Microdevices. Sep. Purif. Technol. 2017, 172, 16–31. [Google Scholar] [CrossRef]
- García-Merino, B.; Bringas, E.; Ortiz, I. Synthesis and Applications of Surface-Modified Magnetic Nanoparticles: Progress and Future Prospects. Rev. Chem. Eng. 2021, 38, 821–842. [Google Scholar] [CrossRef]
- García-Merino, B.; Bringas, E.; Ortiz, I. Robust System for the Regenerative Capture of Aqueous Pollutants with Continuously Synthesized and Functionalized Magnetic Nanoparticles. J. Environ. Chem. Eng. 2022, 10, 108417. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Tran, H.V.; Xu, S.; Lee, T.R. Fe3O4 Nanoparticles: Structures, Synthesis, Magnetic Properties, Surface Functionalization, and Emerging Applications. Appl. Sci. 2021, 11, 11301. [Google Scholar] [CrossRef]
- Savliwala, S.; Chiu-Lam, A.; Unni, M.; Rivera-Rodriguez, A.; Fuller, E.; Sen, K.; Threadcraft, M.; Rinaldi, C. Magnetic Nanoparticles. In Nanoparticles for Biomedical Applications: Fundamental Concepts, Biological Interactions and Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2019; pp. 195–221. ISBN 9780128166628. [Google Scholar]
- Guizani, M.; Maeda, T.; Ito, R.; Funamizu, N. Synthesis and Characterization of Magnetic Nanoparticles as a Candidate Draw Solution for Forward Osmosis. J. Water Environ. Technol. 2018, 16, 63–71. [Google Scholar] [CrossRef]
- Khazaie, F.; Sheshmani, S.; Shokrollahzadeh, S.; Shahvelayati, A.S. Desalination of Saline Water via Forward Osmosis Using Magnetic Nanoparticles Covalently Functionalized with Citrate Ions as Osmotic Agent. Environ. Technol. 2022, 43, 2113–2123. [Google Scholar] [CrossRef]
- Petrinic, I.; Stergar, J.; Bukšek, H.; Drofenik, M.; Gyergyek, S.; Hélix-Nielsen, C.; Ban, I. Superparamagnetic Fe3O4@ca Nanoparticles and Their Potential as Draw Solution Agents in Forward Osmosis. Nanomaterials 2021, 11, 2965. [Google Scholar] [CrossRef]
- Ge, Q.; Yang, L.; Cai, J.; Xu, W.; Chen, Q.; Liu, M. Hydroacid Magnetic Nanoparticles in Forward Osmosis for Seawater Desalination and Efficient Regeneration via Integrated Magnetic and Membrane Separations. J. Memb. Sci. 2016, 520, 550–559. [Google Scholar] [CrossRef]
- Shabani, Z.; Rahimpour, A. Chitosan- and Dehydroascorbic Acid-Coated Fe3O4 Nanoparticles: Preparation, Characterization and Their Potential as Draw Solute in Forward Osmosis Process. Iran. Polym. J. 2016, 25, 887–895. [Google Scholar] [CrossRef]
- Mishra, T.; Ramola, S.; Shankhwar, A.K.; Srivastava, R.K. Use of Synthesized Hydrophilic Magnetic Nanoparticles (HMNPs) in Forward Osmosis for Water Reuse. Water Sci. Technol. Water Supply 2016, 16, 229–236. [Google Scholar] [CrossRef]
- Ling, M.M.; Chung, T.S. Desalination Process Using Super Hydrophilic Nanoparticles via Forward Osmosis Integrated with Ultrafiltration Regeneration. Desalination 2011, 278, 194–202. [Google Scholar] [CrossRef]
- Ling, M.M.; Wang, K.Y.; Chung, T.S. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse. Ind. Eng. Chem. Res. 2010, 49, 5869–5876. [Google Scholar] [CrossRef]
- Ban, I.; Markuš, S.; Gyergyek, S.; Drofenik, M.; Korenak, J.; Helix-Nielsen, C.; Petrinić, I. Synthesis of Poly-Sodium-Acrylate (PSA)-Coated Magnetic Nanoparticles for Use in Forward Osmosis Draw Solutions. Nanomaterials 2019, 9, 1238. [Google Scholar] [CrossRef] [PubMed]
- Guizani, M.; Maeda, T.; Ito, R.; Funamizu, N. Engineering of Size-Controlled Magnetic Nanoparticles for Use as a Draw Solution in a Forward Osmosis Process. Desalin. Water Treat. 2019, 154, 21–29. [Google Scholar] [CrossRef]
- Dey, P.; Izake, E.L. Mixed Polymer-Coated Magnetic Nanoparticles as Forward Osmosis Draw Agents of Tuned Hydrophilicity. Chem. A Eur. J. 2016, 22, 11253–11260. [Google Scholar] [CrossRef]
- Dey, P.; Izake, E.L. Magnetic Nanoparticles Boosting the Osmotic Efficiency of a Polymeric FO Draw Agent: Effect of Polymer Conformation. Desalination 2015, 373, 79–85. [Google Scholar] [CrossRef]
- Chi, X.Y.; Zhang, P.Y.; Guo, X.J.; Xu, Z.L. Interforce Initiated by Magnetic Nanoparticles for Reducing Internal Concentration Polarization in CTA Forward Osmosis Membrane. J. Appl. Polym. Sci. 2017, 134, 44852. [Google Scholar] [CrossRef]
- Kadhim, R.M.; Al-Abodi, E.E.; Al-Alawy, A.F. Citrate-Coated Magnetite Nanoparticles as Osmotic Agent in a Forward Osmosis Process. Desalin. Water Treat. 2018, 115, 45–52. [Google Scholar] [CrossRef]
- Na, Y.; Yang, S.; Lee, S. Evaluation of Citrate-Coated Magnetic Nanoparticles as Draw Solute for Forward Osmosis. Desalination 2014, 347, 34–42. [Google Scholar] [CrossRef]
- Yang, H.M.; Park, C.W.; Han, M.J.; Seo, B.K.; Moon, J.K.; Lee, K.W. Hyperbranched Polyglycerol Carboxylate-Coated Magnetic Nanoparticles as a Draw Solute in a Combined Forward Osmosis and Ultrafiltration Process. J. Nanosci. Nanotechnol. 2016, 16, 10858–10863. [Google Scholar] [CrossRef]
- Yang, H.M.; Seo, B.K.; Lee, K.W.; Moon, J.K. Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as Draw Solute in Forward Osmosis. Asian J. Chem. 2014, 26, 4031–4034. [Google Scholar] [CrossRef]
- Yang, H.M.; Choi, H.M.; Jang, S.C.; Han, M.J.; Seo, B.K.; Moon, J.K.; Lee, K.W. Succinate Functionalization of Hyperbranched Polyglycerol-Coated Magnetic Nanoparticles as a Draw Solute during Forward Osmosis. J. Nanosci. Nanotechnol. 2015, 15, 8279–8284. [Google Scholar] [CrossRef]
- Zhou, A.; Luo, H.; Wang, Q.; Chen, L.; Zhang, T.C.; Tao, T. Magnetic Thermoresponsive Ionic Nanogels as Novel Draw Agents in Forward Osmosis. RSC Adv. 2015, 5, 15359–15365. [Google Scholar] [CrossRef]
- Ge, Q.; Su, J.; Chung, T.S.; Amy, G. Hydrophilic Superparamagnetic Nanoparticles: Synthesis, Characterization, and Performance in Forward Osmosis Processes. Ind. Eng. Chem. Res. 2011, 50, 382–388. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, N.; Zhao, D.; Lu, X. Thermoresponsive Magnetic Nanoparticles for Seawater Desalination. ACS Appl. Mater. Interfaces 2013, 5, 11453–11461. [Google Scholar] [CrossRef]
- Khazaie, F.; Shokrollahzadeh, S.; Bide, Y.; Sheshmani, S.; Shahvelayati, A.S. Forward Osmosis Using Highly Water Dispersible Sodium Alginate Sulfate Coated-Fe3O4 Nanoparticles as Innovative Draw Solution for Water Desalination. Process Saf. Environ. Prot. 2021, 146, 789–799. [Google Scholar] [CrossRef]
- Bai, H.; Liu, Z.; Sun, D.D. Highly Water Soluble and Recovered Dextran Coated Fe3O4 Magnetic Nanoparticles for Brackish Water Desalination. Sep. Purif. Technol. 2011, 81, 392–399. [Google Scholar] [CrossRef]
- Shoorangiz, L.; Karimi-Jashni, A.; Azadi, F.; Zerafat, M.M. Water Treatment by Forward Osmosis Using Novel D-Xylose Coated Magnetic Nanoparticles as Draw Agent. Environ. Technol. 2022, 43, 3309–3318. [Google Scholar] [CrossRef]
- Tayel, A.; Nasr, P.; Sewilam, H. Forward Osmosis Desalination Using Pectin-Coated Magnetic Nanoparticles as a Draw Solution. Clean Technol. Environ. Policy 2019, 21, 1617–1628. [Google Scholar] [CrossRef]
- Shakeri, A.; Salehi, H.; Khankeshipour, N.; Nakhjiri, M.T.; Ghorbani, F. Magnetic Nanoparticle-Crosslinked Ferrohydrogel as a Novel Class of Forward Osmosis Draw Agent. J. Nanopart. Res. 2018, 20, 325. [Google Scholar] [CrossRef]
- Bide, Y.; Shokrollahzadeh, S. Toward Tailoring of a New Draw Solute for Forward Osmosis Process: Branched Poly (Deep Eutectic Solvent)-Decorated Magnetic Nanoparticles. J. Mol. Liq. 2020, 320, 114409. [Google Scholar] [CrossRef]
- Tayel, A.; Nasr, P.; Sewilam, H. Enhanced Water Flux Using Uncoated Magnetic Nanoparticles as a Draw Solution in Forward Osmosis Desalination. Desalin. Water Treat. 2020, 193, 169–176. [Google Scholar] [CrossRef]
- The Global Goals Reduced Inequalities. Available online: https://www.globalgoals.org/goals/10-reduced-inequalities/ (accessed on 13 May 2024).
- ALZET® Osmotic Pumps Specifications. Available online: https://www.alzet.com/products/alzet_pumps/specifications/ (accessed on 22 August 2024).
- Basak, S. Thermoplastic Elastomers in Biomedical Industry–Evolution and Current Trends. J. Macromol. Sci. Part A Pure Appl. Chem. 2021, 58, 579–593. [Google Scholar] [CrossRef]
- Sabbagh Dit Hawasli, R.; Barton, S.; Nabhani-Gebara, S. Ambulatory Chemotherapy: Past, Present, and Future. J. Oncol. Pharm. Pract. 2021, 27, 962–973. [Google Scholar] [CrossRef]
- Figueroa-Restrepo, L.; Sánchez-Martínez, D.; Sáenz-López, J.; Díaz-Coronel, D.; Polanco-Guerra, C.; Carrascal-Carrasquilla, O. Update on Alternatives for Postoperative Pain Control in Plastic Surgery. Rev. Chil. Anest. 2023, 52, 365–368. [Google Scholar] [CrossRef]
- Spencer-Jones, J.; Luxton, T.; Bond, S.E.; Sandoe, J. Feasibility, Effectiveness and Safety of Elastomeric Pumps for Delivery of Antibiotics to Adult Hospital Inpatients—A Systematic Review. Antibiotics 2023, 12, 1351. [Google Scholar] [CrossRef]
- Lee, P. Infusion Pump development and Implications for Nurses. Br. J. Nurs. 2015, 24, S30–S37. [Google Scholar] [CrossRef]
- McCutcheon, J.R.; Elimelech, M. Modeling Water Flux in Forward Osmosis: Implications for Improved Membrane Design. AIChE J. 2007, 53, 1736–1744. [Google Scholar] [CrossRef]
- Gómez-Pastora, J.; Dominguez, S.; Bringas, E.; Rivero, M.J.; Ortiz, I.; Dionysiou, D.D. Review and Perspectives on the Use of Magnetic Nanophotocatalysts (MNPCs) in Water Treatment. Chem. Eng. J. 2017, 310, 407–427. [Google Scholar] [CrossRef]
- González-Fernández, C.; Gómez-Pastora, J.; Bringas, E.; Zborowski, M.; Chalmers, J.J.; Ortiz, I. Recovery of Magnetic Catalysts: Advanced Design for Process Intensification. Ind. Eng. Chem. Res. 2021, 60, 16780–16790. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gonzales, R.R.; Takagi, R.; Chen, Y.C.; Matsuoka, A.; Deng, L.; Matsuyama, H. Continuous Purification of Drugs by Ionic Liquid-Drawn Organic Solvent Forward Osmosis and Solute Recovery. Environ. Chem. Lett. 2023, 22, 29–34. [Google Scholar] [CrossRef]
- Takada, R.; Takagi, R.; Matsuyama, H. High-Degree Concentration Organic Solvent Forward Osmosis for Pharmaceutical Pre-Concentration. Membranes 2024, 14, 14. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Chung, T.S. Pharmaceutical Concentration Using Organic Solvent Forward Osmosis for Solvent Recovery. Nat. Commun. 2018, 9, 1426. [Google Scholar] [CrossRef]
- Goh, K.S.; Chen, Y.; Ng, D.Y.F.; Chew, J.W.; Wang, R. Organic Solvent Forward Osmosis Membranes for Pharmaceutical Concentration. J. Memb. Sci. 2022, 642, 119965. [Google Scholar] [CrossRef]
- González-Fernández, C.; Ciannella, S.; Bringas, E.; Ortiz, I.; Gómez-Pastora, J. Chemical and Biological Methods for the Synthesis of Magnetic Nanoparticles. In Magnetic Nanoparticles in Nanomedicine; Kai, W., Jian-Ping, W., Eds.; Elsevier: Cambridge, MA, USA; Woodhead Publishing: Cambridge, UK, 2024; pp. 115–134. ISBN 9780443216688. [Google Scholar]
Drug | Active Ingredient | Application | Ref. |
---|---|---|---|
Actoplus Met XR (Takeda Pharmaceuticals Company, Tokyo, Japan) | Pioglitazone and metformin hydrochloride | Glycaemic control in adults with type 2 diabetes mellitus | [42] |
Adalat Oros (Bayer, Leverkusen, Germany) | Nifedipine | Angina and hypertension | [43] |
Concerta® (Janssen Pharmaceuticals, Inc., Beerse, Belgium) | Methylphenidate hydrochloride | Attention deficit hyperactivity disorder | [44] |
Ditropan XL® (Janssen Pharmaceuticals, Inc., Beerse, Belgium) | Oxybutynin chloride | Overactive bladder | [45] |
Elafax® XR (Gador S.A., Bueno Aires, Argentina) | Venlafaxine | Major depressive disorder, generalized anxiety disorder, and panic disorder | [46] |
Glucotrol XL (Pfizer, Inc., New York, NY, USA) | Glipizide | Improve glycaemic control in patients with type 2 diabetes mellitus | [47] |
Osmolex ERTM (Supernus Pharmaceuticals, Rockville, MD, USA) | Amantadine hydrochloride | Parkinson’s disease and drug-induced extrapyramidal reactions in adults | [48] |
Procardia XL® (Pfizer, Inc., New York, NY, USA) | Nifedipine | Angina and hypertension | [49] |
Osmotic System | Osmotic Agent | Administration | Active Ingredient | _target | Ref. |
---|---|---|---|---|---|
CPOP | Potassium chloride and mannitol | Oral | Paliperidone | - | [34] |
Lactose monohydrate and fructose | Enalapril maleate | - | [9] | ||
EOP | Hydroxypropyl methylcelluloses | Diltiazem hydrochloride | - | [11] | |
Sodium chloride | Valganciclovir HCl | Beagle dogs | [12] | ||
PPOP | Diltiazem, ambroxol, paracetamol, etc. | - | [10] | ||
EOP | Mannitol with polyethylene oxide | Implanted on the jugular vein | Fenofibrate-loaded solid lipid coating + LDL antibodies | White pigs | [50] |
HTP * | Sodium chloride | Implanted subcutaneously | PDE8 inhibitor | C57BL/6 mice | [39,51] |
HTP * Model 1002 | Implanted subcutaneously and linked to the ventricle | tcDNA | Mdx52 mice | [41,51] | |
HTP * Model 1004 | Implanted in the right ear | Fluvastatin | CBA/CaJ mice | [38,51] | |
HTP * Model 2001 | Implanted subcutaneously | Meloxicam | Pigeons | [19,51] | |
HTP * Model 2006 | Angiotensin II | Mst1−/− and C57BL/6 wild-type mice | [40,51] | ||
HTP * Model 2006 | Implanted in the left ear | Artificial perilymph | Guinea pigs | [51,52] | |
HTP * Model 2ML4 | Implanted subcutaneously in the lumbar area | Isoform FS-288 | Sprague–Dawley rats | [51,53] | |
HTP * Model AP2004 | Implanted subcutaneously | Angiotensin II | Apoe−/− | [51,54] | |
HTP * Model 2002 | Connected to the neurite outgrowth chamber | Neurotrophin-3 | 3D-printed neurite outgrowth chamber | [51,55] |
Particles and Coating/Functionalization | MNP Synthesis Method | Particle Size (nm) | FO Membrane | Draw Solution | Osmotic Pressure (bars) | Feed Solution | Water Flux (LMH) | Reverse Solute Flux (gMH) | MNP Recovery Method | Saturated Mass Magnetization (emu·g−1) | Recovery | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MNPs coated/functionalized with organic acids and their derivatives | ||||||||||||
Citric acid-coated MNPs | Co-precipitation | 3–7 | AIM™ HFFO membrane (Aquaporin A/S, Kongens Lyngby, Denmark); A = 180.0 cm2 | 3.70% (w/w) | 18.7 | Deionized water | 9.2 | 0.08 | - | 44.0 | - | [67] |
40 | Polyethersulfone thin film composite FO membranes | 600.00 g·L−1 | 80.0 | 3.5% (w/w) NaCl | 8.5 | >0.10 | Magnetic field and nanofiltration | 60.0 | ≈100.0% t = 10 min | [68] | ||
Dehydroascorbic acid-coated MNPs | 20 | Cellulose triacetate/ cellulose acetate FO membrane; A = 40.0 cm2 | 0.06 g·L−1 | - | Deionized water | 6.0 | - | Magnetic field | 77.7 | ≈100.0% | [69] | |
Multicoated MNPs with polyacrylic acid as a terminal hydrophilic ligand | 12 | AIM™ HFFO (Aquaporin A/S, Kongens Lyngby, Denmark); A = 180.0 cm2 | 0.60% | 8.9 | 4.1 | - | - | 67.6% | [58] | |||
Polyacrylic acid-coated MNPs | Microwave irradiation and co-precipitation | 7 | AIM™ HFFO module (Aquaporin A/S, Kongens Lyngby, Denmark); A = 180.0 cm2 | 0.70% | 12.8 | 8.1 | - | 19.4 | ≈100.0% | [56] | ||
Thermal decomposition | 8–30 | Cellulose triacetate FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 20.0 cm2 | 0.08 M | - | 13.9 | - | - | ≈100.0% | [70] | |||
35 g·L−1 NaCl | 6.3 | |||||||||||
5 | Commercial FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 8.0 cm2 | 0.08 M | 70.9 | Deionized water | 12.0 | - | Ultrafiltration | - | ≈100.0% | [71] | ||
3.5% (w/w) NaCl | 3.0 | |||||||||||
20–30 | 0.05 M | - | Deionized water | 7.7 | - | Magnetic field | - | ≈100.0% | [72] | |||
Polyethylene glycol dicarboxylic acid- functionalized SiO2-coated MNPs | - | FO membrane (Aquaporin A/S, Kongens Lyngby, Denmark); A = 31.0 cm2 | 8.00 g·L−1 | - | 40 mg·L−1 NaCl | 12.2 | - | 5.0 | 63.4% | [15] | ||
Poly-sodium acrylate-coated MNPs | Co-precipitation | 520 | AIMTM membrane (Aquaporin A/S, Kongens Lyngby, Denmark); A = 33.2 cm2 | 7.00% | 9 | Deionized water | 3.8 | 0.05 | - | 25.0 | - | [73] |
77–166 | Cellulose triacetate FO membrane; A = 98.0 cm2 | 1.00% (w/w) | 1.3 | - | - | - | - | - | [74] | |||
Poly-sodium acrylate-coated MNPs | Thermal decomposition | 7 | Specialized carbon nanotube FO membrane (Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2 | 0.07% (w/v) | 25.3 | Deionized water | 11.7 | - | Magnetic field and heating | - | ≈100.0% t = 1–5 min | [75] |
9 | 0.13% (w/w) | 11.4 | 5.3 | - | Magnetic field | - | ≈100.0% t = 5 min | [76] | ||||
Sodium oleate-coated MNPs | Co-precipitation | 32 | Cellulose triacetate magnetic composite FO membrane; A = 23.7 cm2 | 0.1 g·L−1 | - | 1.0 M NaCl | 11.4 | - | - | 84.4% | [77] | |
Tri-sodium citrate- functionalized SiO2-coated MNPs | 20–40 | Cellulose triacetate FO membrane; A = 14.0 cm2 | 80.00 g·L−1 | 125.6 | Deionized water | 17.1 | 1.50 | 32.7 | ≈100.0% | [66] | ||
0.5 M NaCl | 2.7 | - | ||||||||||
Tri-sodium citrate-coated MNPs | 66–69 | Cellulose triacetate FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 140.0 cm2 | 2.00 g·L−1 | - | Deionized water | 34.7 | - | - | - | - | [78] | |
3–8 | Cellulose triacetate FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 20.0 cm2 | 0.02 g·L−1 | - | 17.3 | - | - | - | - | [79] | |||
MNPs coated/functionalized with organic polymers | ||||||||||||
Chitosan-coated MNPs | Co-precipitation | 20 | Cellulose triacetate/ cellulose acetate FO membrane; A = 40.0 cm2 | 0.06 g·L−1 | - | Deionized water | 5.0 | - | Magnetic field | 70.3 | ≈100.0% | [69] |
Hyperbranched polyglycerol carboxylate-coated MNPs | Thermal decomposition | 29 | OsMem™ (Hydration Tech. Innovations, Albany, OR, USA); A = 50.0 cm2 | 500.00 g·L−1 | 15.8 | 7.2 | - | Ultrafiltration | 18.7 | ≈100.0% | [80] | |
Hyperbranched polyglycerol-coated MNPs | 21 | 300.00 g·L−1 | 15.2 | 6.2 | - | - | 20.7 | - | [81] | |||
Hyperbranched polyglycerol-coated MNPs functionalized with succinic anhydride moieties | 24 | OsMem™ (Hydration Tech. Innovations, Albany, OR, USA); A = 2.4 cm2 | 400.00 g·L−1 | 9.7 | 3.0 | - | Ultrafiltration | 19.3 | ≈100.0% | [82] | ||
Magnetic poly (N-isopropylacrylamide-co-sodium 2-acrylamido-2-methylpropane sulfonate) nanogels | Co-precipitation | 271 | Cellulose triacetate with an embedded polyester screen mesh FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 23.0 cm2 | 100.00 g·L−1 | 3.3 | 0.6 | - | Magnetic field and heating | 25.3 | ≈100.0% t = 20 min | [83] | |
Poly (N-isopropylacrylamide)-coated MNPs | Thermal decomposition | 7 | Specialized carbon nanotube FO membrane (Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2 | 0.07% (w/v) | 25.3 | 11.7 | - | - | ≈100.0% t = 1–5 min | [75] | ||
Polyethylene glycol 4000- coated MNPs | Co-precipitation | - | Cellulose triacetate FO membrane (Fluid Tech. Solutions, Inc., San José, CA, USA); A = 49.0 cm2 | 10.00 g·L−1 | - | Deionized water | 14.9 | - | Magnetic field | - | ≈100.0% t = 2 min | [65] |
Polyethylene glycol-coated MNPs | Polyol process | 9–32 | Cellulose triacetate FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 20.0 cm2 | 0.08 M | - | 11.3 | - | - | ≈100.0% | [70] | ||
35 g·L−1 NaCl | 5.2 | |||||||||||
Polyethylene glycol dicarboxylic -coated MNPs | Thermal decomposition | 13 | Flat sheet FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 12.0 cm2 | 0.07 M | 73.9 | Deionized water | 9.1 | - | 35.5 | ≈100.0% | [84] | |
Poly(amidoamine) dendrimer-coated MNPs | Co-precipitation | 17 | Thin film composite FO membrane (Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2 | 30.00 g·L−1 | - | 12.9 | - | 48.0 | 100.0% t = 2 min | [14] | ||
Poly(sodium styrene-4-sulfonate)-co-poly (N-isopropylacrylamide)-coated MNPs | Thermal decomposition | 5 | Thin film composite FO membrane (Hydration Tech. Innovations, Albany, OR, USA) | 33.00% (w/w) | 55.7 | Deionized water | 14.9 | - | Magnetic field, ultrafiltration, and heating | 11.1 | ≈100.0% | [85] |
3.5% (w/w) NaCl | 2.7 | |||||||||||
Sodium alginate sulfate-functionalized SiO2-coated MNPs | Co-precipitation | 63–76 | Cellulose triacetate A = 14.0 cm2 | 60.00 g·L−1 | 118.8 | Deionized water | 8.5 | 0.23 | Magnetic field | 50.6 | 100.0% | [86] |
Triethylene glycol-coated MNPS | Thermal decomposition | 20 | Commercially FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 8.0 cm2 | 0.20 M | - | 6.0 | - | - | 20.0 | - | [71] | |
MNPs coated/functionalized with polysaccharides | ||||||||||||
Dextran-coated MNPs | Co-precipitation | 10 | Commercially FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 48.0 cm2 | 0.50 M | - | Deionized water | 4.0 | - | Magnetic field | 32.4 | ≈100.0% t = 10–15 min | [87] |
2 g·L−1 MgSO4 | 3.0 | |||||||||||
D-Xylose-coated MNPs | Hydrothermal method | - | Commercial FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 1.8 cm2 | 6.50% (w/v) | 1.5 | Deionized water | 2.9 | - | 30.0 | ≈100.0% | [88] | |
0.01 M NaCl | 1.3 | |||||||||||
Pectin-coated MNPs | Co-precipitation | 390 | Polyamide FO membrane (Porifera Inc., San Leandro, CA, USA); A = 12.6 cm2 | 0.50% | - | Deionized water | 26.6 | - | 18.6 | ≈100.0% t = 12–16 min | [89] | |
1% (w/w) NaCl | 6.6 | |||||||||||
MNPs coated/functionalized with other organic compounds | ||||||||||||
3-(Trimethoxysilyl) propyl methacrylate-functionalized SiO2-coated MNPs | Co-precipitation and sol-gel method | 80 | Thin film composite FO membrane; A = 4.9 cm2 | - | - | Deionized water | 10.2 | - | Magnetic field | 44.2 | ≈100.0% | [90] |
Poly (deep eutectic solvent)-coated MNPs | Solvothermal procedure | 15–25 | Cellulose triacetate FO membrane (Hydration Tech. Innovations, Albany, OR, USA); A = 15.0 cm2 | 3.50 g·L−1 | 68.9 | 17.9 | 0.12 | 60.4 | ≈100.0% | [91] | ||
Bare MNPs and MNPs coated/functionalized with inorganic compounds | ||||||||||||
Bare MNPs | Co-precipitation | 10–20 | FTSH2O (Porifera Inc., San Leandro, CA, USA); A = 42.0 cm2 | - | - | - | 1.9 | - | - | - | - | [16] |
127 | Polyamide FO membrane (Porifera Inc., San Leandro, CA, USA); A = 12.6 cm2 | 5.00% (w/w) | - | Deionized water | 35.7 | - | Magnetic field | 3.8 | ≈100.0% t = 7 min | [92] | ||
20 g·L−1 NaCl | 2.5 | |||||||||||
EDTA-functionalized SiO2-coated MNPs | Hydrothermal method | 280 | Polyamide thin film composite FO membrane (Porifera Inc., San Leandro, CA, USA); A = 20.0 cm2 | 60.00 g·L−1 | - | 0.5 g·L−1 octanoic acid | 9.6 | - | 18.7 | >90.0% | [59] | |
Potassium-functionalized iron oxide-doped carbon nanofiber MNPs | Co-precipitation | 4500 | FTSH2O™ (Sterlitech Corporation, Auburn, WA, USA); A = 42.0 cm2 | 0.10% (w/v) | 86.1 | Deionized water | 3.4 | 0.10 | - | 22.3 | - | [20] |
1.0 M NaCl | 2.1 | |||||||||||
SiO2-coated MNPs | Thermal decomposition | - | FO membrane (Aquaporin A/S, Kongens Lyngby, Denmark); A = 31.0 cm2 | 8.00 g·L−1 | - | 40 mg·L−1 NaCl | 11.0 | - | Magnetic field | 5.0 | 83.9% | [15] |
Disposable Mechanical Pumps | Intravenous Administration Systems | Wearable Device | Extracorporeal Device | |
---|---|---|---|---|
Type of system | Existing | Proposed | ||
Transport | × | × | ✓ | × |
Reusability | × | ✓ | ✓ | ✓ |
Independence of an energy source | ✓ | × | ✓ | ✓ |
Independence of environmental factors | × | ✓ | ✓ | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Tumar, D.; García-Merino, B.; González-Fernández, C.; Ortiz, I.; San-Román, M.-F.; Bringas, E. Novel Applications in Controlled Drug Delivery Systems by Integrating Osmotic Pumps and Magnetic Nanoparticles. Sensors 2024, 24, 7042. https://doi.org/10.3390/s24217042
Navarro-Tumar D, García-Merino B, González-Fernández C, Ortiz I, San-Román M-F, Bringas E. Novel Applications in Controlled Drug Delivery Systems by Integrating Osmotic Pumps and Magnetic Nanoparticles. Sensors. 2024; 24(21):7042. https://doi.org/10.3390/s24217042
Chicago/Turabian StyleNavarro-Tumar, David, Belén García-Merino, Cristina González-Fernández, Inmaculada Ortiz, Ma.-Fresnedo San-Román, and Eugenio Bringas. 2024. "Novel Applications in Controlled Drug Delivery Systems by Integrating Osmotic Pumps and Magnetic Nanoparticles" Sensors 24, no. 21: 7042. https://doi.org/10.3390/s24217042
APA StyleNavarro-Tumar, D., García-Merino, B., González-Fernández, C., Ortiz, I., San-Román, M.-F., & Bringas, E. (2024). Novel Applications in Controlled Drug Delivery Systems by Integrating Osmotic Pumps and Magnetic Nanoparticles. Sensors, 24(21), 7042. https://doi.org/10.3390/s24217042