Underwater Wireless Communications
Funding
Conflicts of Interest
List of Contributions
- Mizeraczyk, J.; Studanski, R.; Zak, A.; Czapiewska, A. A Method for Underwater Wireless Data Transmission in a Hydroacoustic Channel under NLOS Conditions. Sensors 2021, 21, 7825. https://doi.org/10.3390/s21237825.
- Han, R.; Jia, N.; Guo, Z.; Huang, J.; Xiao, D.; Guo, S. Prefiltered Single-Carrier Frequency-Domain Equalization for Binary CPM over Shallow Water Acoustic Channel. Sensors 2022, 22, 3821. https://doi.org/10.3390/s22103821.
- Jiang, B.; Tang, Y.; Zhao, Y.; Bao, J.; Liu, C.; Tang, X. Improved Frequency Domain Turbo Equalization with Expectation Propagation Interference Cancellation in Underwater Acoustic Communications. Sensors 2023, 23, 7801. https://doi.org/10.3390/s23187801.
- Hu, Y.; Bao, J.; Sun, W.; Fu, X. Modulation Recognition Method for Underwater Acoustic Communication Signals Based on Passive Time Reversal-Autoencoder with the Synchronous Signals. Sensors 2023, 23, 5997. https://doi.org/10.3390/s23135997.
- Bozzi, F.A.; Jesus, S.M. Vector Sensor Steering-Dependent Performance in an Underwater Acoustic Communication Field Experiment. Sensors 2022, 22, 8332. https://doi.org/10.3390/s22218332.
- Ahn, J.; Do, D.; Kim, W. The Long-Range Biomimetic Covert Communication Method Mimicking Large Whale. Sensors 2022, 22, 8011. https://doi.org/10.3390/s22208011.
- Canales-Gómez, G.; León-Gónzalez, G.; Jorge-Muñoz, N.; Arroyo-Núñez, J.H.; Antonio-Yañez, E.D.; Núñez-Cruz, R.S. Communication System Based on Magnetic Coils for Underwater Vehicles. Sensors 2022, 22, 8183. https://doi.org/10.3390/s22218183.
- Esmaiel, H.; Sun, H. Energy Harvesting for TDS-OFDM in NOMA-Based Underwater Communication Systems. Sensors 2022, 22, 5751. https://doi.org/10.3390/s22155751.
- Liu, H.; He, C.; Yu, Y.; Bai, Y.; Han, Y. Image Super Resolution-Based Channel Estimation for Orthogonal Chirp Division Multiplexing on Shallow Water Underwater Acoustic Communications. Sensors 2024, 24, 2846. https://doi.org/10.3390/s24092846.
- Wang, B.; Ben, K. GTR: GAN-Based Trusted Routing Algorithm for Underwater Wireless Sensor Networks. Sensors 2024, 24, 4879. https://doi.org/10.3390/s24154879.
References
- Zeng, Z.; Fu, S.; Zhang, H.; Dong, Y.; Cheng, J. A survey of underwater optical wireless communications. IEEE Commun. Surv. Tutor. 2016, 19, 204–238. [Google Scholar] [CrossRef]
- Menaka, D.; Gauni, S.; Manimegalai, C.T.; Kalimuthu, K. Challenges and vision of wireless optical and acoustic communication in underwater environment. Int. J. Commun. Syst. 2022, 35, e5227. [Google Scholar] [CrossRef]
- Junejo, N.U.R.; Sattar, M.; Adnan, S.; Sun, H.; Adam, A.B.; Hassan, A.; Esmaiel, H. A survey on physical layer techniques and challenges in underwater communication systems. J. Mar. Sci. Eng. 2023, 11, 885. [Google Scholar] [CrossRef]
- Mostafa, M.; Esmaiel, H.; Mohamed, E.M. A Comparative Study on Underwater Communications for Enabling C/U Plane Splitting Based Hybrid UWSNs, Proceedings of the IEEE WCNC, Barcelona, Spain, 15–18 April 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–6. [Google Scholar]
- Qasem, Z.A.; Wang, J.; Leftah, H.A.; Sun, H.; Hong, S.; Qi, J.; Esmaiel, H. Real signal DHT-OFDM with index modulation for underwater acoustic communication. IEEE J. Ocean. Eng. 2022, 48, 246–259. [Google Scholar] [CrossRef]
- Guo, J.; Song, S.; Liu, J.; Chen, H.; Xu, Y.; Cui, J.-H. Exploring applicable scenarios and boundary of MAC protocols: A MAC performance analysis framework for underwater acoustic networks. IEEE Trans. Mob. Comput. 2024, 1–14. [Google Scholar] [CrossRef]
- Nkenyereye, L.; Nkenyereye, L.; Ndibanje, B. Internet of Underwater Things: A Survey on Simulation Tools and 5G-Based Underwater Networks. Electronics 2024, 13, 474. [Google Scholar] [CrossRef]
- Jehangir, A.; Ashraf, S.M.; Khalil, R.A.; Saeed, N. ISAC-Enabled Underwater IoT Network Localization: Overcoming Asynchrony, Mobility, and Stratification Issues. IEEE Open J. Commun. Soc. 2024, 99, 1. [Google Scholar] [CrossRef]
- Ma, X.; Wang, B.; Tian, W.; Ding, X.; Han, Z. Strategic Game Model for AUV-Assisted Underwater Acoustic Covert Communication in Ocean Internet of Things. IEEE Internet Things J. 2024, 99, 1. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaiel, H.; Sun, H. Underwater Wireless Communications. Sensors 2024, 24, 7075. https://doi.org/10.3390/s24217075
Esmaiel H, Sun H. Underwater Wireless Communications. Sensors. 2024; 24(21):7075. https://doi.org/10.3390/s24217075
Chicago/Turabian StyleEsmaiel, Hamada, and Haixin Sun. 2024. "Underwater Wireless Communications" Sensors 24, no. 21: 7075. https://doi.org/10.3390/s24217075
APA StyleEsmaiel, H., & Sun, H. (2024). Underwater Wireless Communications. Sensors, 24(21), 7075. https://doi.org/10.3390/s24217075