Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends
Abstract
:1. Introduction
Review Methodology
2. Passive Exoskeletal Solutions
2.1. Upper Limb Exoskeletons
2.2. Lower Limb Exoskeletons
2.3. Back Exoskeletons
2.4. Design Principles of Passive Exoskeletal Solutions
2.4.1. Passive Exoskeletal Frame Design
2.4.2. Passive Actuator/Element
2.5. Passive Exoskeleton Maintenance
2.6. Passive Exoskeleton Applications
2.7. Disadvantages
2.8. Recent Trends in Passive Exoskeletons
3. Sensors Used in Active Exoskeletal Solutions
3.1. Angle Sensors and Encoders
3.1.1. Capacitive Angle Sensors
3.1.2. Inductive Angle Sensors
3.1.3. Hall-Effect Angle Sensors
3.2. Accelerometer Sensors
3.3. Force and Torque Sensors
3.3.1. Strain Gauges
3.3.2. Torque Sensors
3.4. EMG Sensors
3.4.1. Working Principle
3.4.2. Applications
3.4.3. Challenges
3.5. Comparative Analysis of Sensor Technologies
4. Actuators Used in Active Exoskeletal Solutions
4.1. Conventional Actuators
4.1.1. Electric Actuators
4.1.2. Hydraulic Actuators
4.1.3. Pneumatic Actuators
4.2. Non-Conventional Actuators
4.2.1. Shape Memory Alloy (SMA) Actuators
4.2.2. SMA-Based Soft Fabrics
4.2.3. Electroactive Polymer (EAP) Actuators
4.2.4. Actuator Limitations
5. Communication and Data Security in Active Exoskeletal Solutions
- Rivest–Shamir–Adleman (RSA) is an asymmetric encryption method that is utilized to secure sensitive data, specifically for the purpose of exchanging secure keys (public and private keys).
- Transport Layer Security (TLS) is a protocol that guarantees confidentiality and security for communication between apps and users over the internet. Furthermore, this technology ensures complete security for the transmission of data.
- ChaCha20-Poly1305 is a stream cipher combined with a message authentication code (MAC) that provides authenticated encryption.
6. Active Exoskeletal Solutions
6.1. Design Principles of Active Exoskeletons
6.2. Recent Trends in Active Exoskeleton Design
6.2.1. Frame Design
6.2.2. Control System
6.2.3. Power Supply
6.3. Active Exoskeletons
6.3.1. Lower Limb Exoskeletons
6.3.2. Upper Limb Exoskeletons
6.3.3. Full Body Exoskeletons
6.3.4. Medical and Rehabilitation Exoskeletons
6.3.5. Industrial and Occupational Exoskeletons
6.3.6. Military and Tactical Exoskeletons
6.3.7. Assistive Exoskeletons for Daily Living
6.4. Challenges in Active Exoskeleton Development and Integration
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Vries, G.J.; Gentile, E.; Miroudot, S.; Wacker, K.M. The Rise of Robots and the Fall of Routine Jobs. Labour Econ. 2020, 66, 101885. [Google Scholar] [CrossRef]
- Bachmann, R.; Gonschor, M.; Lewandowski, P.; Madoń, K. The Impact of Robots on Labour Market Transitions in Europe. Struct. Change Econ. Dyn. 2024, 70, 422–441. [Google Scholar] [CrossRef]
- Gopura, R.A.R.C.; Kiguchi, K. Mechanical Designs of Active Upper-Limb Exoskeleton Robots: State-of-the-Art and Design Difficulties. In Proceedings of the 2009 IEEE International Conference on Rehabilitation Robotics, Kyoto, Japan, 23–26 June 2009; pp. 178–187. [Google Scholar]
- Li, Z.; Xie, H.; Li, W.; Yao, Z. Proceeding of Human Exoskeleton Technology and Discussions on Future Research. Chin. J. Mech. Eng. 2014, 27, 437–447. [Google Scholar] [CrossRef]
- Erden, Y.J.; Rainey, S. An Ethical Assessment of Powered Exoskeletons: Implications from Clinical Use to Industry and Military Contexts. Artif. Organs 2024, 48, 1077–1084. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Srinivasan, D.; Nussbaum, M.A.; Leonessa, A. Human Gait During Level Walking With an Occupational Whole-Body Powered Exoskeleton: Not Yet a Walk in the Park. IEEE Access 2021, 9, 47901–47911. [Google Scholar] [CrossRef]
- Toxiri, S.; Näf, M.B.; Lazzaroni, M.; Fernández, J.; Sposito, M.; Poliero, T.; Monica, L.; Anastasi, S.; Caldwell, D.G.; Ortiz, J. Back-Support Exoskeletons for Occupational Use: An Overview of Technological Advances and Trends. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 237–249. [Google Scholar] [CrossRef]
- Poliero, T.; Fanti, V.; Sposito, M.; Caldwell, D.G.; Natali, C.D. Active and Passive Back-Support Exoskeletons: A Comparison in Static and Dynamic Tasks. IEEE Robot. Autom. Lett. 2022, 7, 8463–8470. [Google Scholar] [CrossRef]
- Halim, I.; Saptari, A.; Abdullah, Z.; Perumal, P.; Zainal Abidin, M.Z.; Muhammad, M.N.; Abdullah, S. Critical Factors Influencing User Experience on Passive Exoskeleton Application: A Review. Int. J. Integr. Eng. 2022, 14, 89–115. [Google Scholar] [CrossRef]
- Skelex 360 XFR. Available online: https://www.skelex.com/products (accessed on 18 August 2024).
- Eksobionics Ekso EVO. Available online: https://eksobionics.com/ekso-evo/ (accessed on 18 August 2024).
- Hilti. USA EXO-S Shoulder Exoskeleton. Available online: https://www.hilti.com (accessed on 18 August 2024).
- Yang, N. Apparatus for Facilitating Walking. U.S. Patent US440684A, 28 January 1890. [Google Scholar]
- Howard, J.; Murashov, V.V.; Lowe, B.D.; Lu, M.-L. Industrial Exoskeletons: Need for Intervention Effectiveness Research. Am. J. Ind. Med. 2020, 63, 201–208. [Google Scholar] [CrossRef]
- Bennett, S.T.; Han, W.; Mahmud, D.; Adamczyk, P.G.; Dai, F.; Wehner, M.; Veeramani, D.; Zhu, Z. Usability and Biomechanical Testing of Passive Exoskeletons for Construction Workers: A Field-Based Pilot Study. Buildings 2023, 13, 822. [Google Scholar] [CrossRef]
- The Science Behind the Apex|HeroWear. Available online: https://herowearexo.com/the-science-studies-behind-the-apex-back-exosuit/ (accessed on 18 August 2024).
- Wang, H.-M.; Le, D.K.L.; Lin, W.-C. Evaluation of a Passive Upper-Limb Exoskeleton Applied to Assist Farming Activities in Fruit Orchards. Appl. Sci. 2021, 11, 757. [Google Scholar] [CrossRef]
- Spada, S.; Ghibaudo, L.; Gilotta, S.; Gastaldi, L.; Cavatorta, M.P. Investigation into the Applicability of a Passive Upper-Limb Exoskeleton in Automotive Industry. Procedia Manuf. 2017, 11, 1255–1262. [Google Scholar] [CrossRef]
- Technologies, L. “The AIRFRAME” Engineering a Healthier Workplace. Available online: https://www.levitatetech.com/airframe-flex/ (accessed on 18 August 2024).
- Schiebl, J.; Tröster, M.; Idoudi, W.; Gneiting, E.; Spies, L.; Maufroy, C.; Schneider, U.; Bauernhansl, T. Model-Based Biomechanical Exoskeleton Concept Optimization for a Representative Lifting Task in Logistics. Int. J. Environ. Res. Public Health 2022, 19, 15533. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Arakawa, H.; Watanabe, T.; Fukuyama, S.; Nishihama, R.; Kikutani, I.; Nakamura, T. TasKi: Overhead Work Assistance Device with Passive Gravity Compensation Mechanism. J. Robot. Mechatron. 2020, 32, 138–148. [Google Scholar] [CrossRef]
- Gull, M.A.; Bai, S.; Bak, T. A Review on Design of Upper Limb Exoskeletons. Robotics 2020, 9, 16. [Google Scholar] [CrossRef]
- Harith, H.H.; Mohd, M.F.; Sowat, S.N. A Preliminary Investigation on Upper Limb Exoskeleton Assistance for Simulated Agricultural Tasks. Appl. Ergon. 2021, 95, 103455. [Google Scholar] [CrossRef]
- Hyun, D.J.; Bae, K.; Kim, K.; Nam, S.; Lee, D.-H. A Light-Weight Passive Upper Arm Assistive Exoskeleton Based on Multi-Linkage Spring-Energy Dissipation Mechanism for Overhead Tasks. Robot. Auton. Syst. 2019, 122, 103309. [Google Scholar] [CrossRef]
- Hyundai Motorsport Begins Testing with Veloster N ETCR. Available online: https://www.hyundai.com/au/en/news/design-and-innovation/hyundai-motor-group-develops-wearable-vest-exoskeleton-to-alleviate-burden-in-overhead-work (accessed on 18 August 2024).
- Van Engelhoven, L.; Poon, N.; Kazerooni, H.; Rempel, D.; Barr, A.; Harris-Adamson, C. Experimental Evaluation of a Shoulder-Support Exoskeleton for Overhead Work: Influences of Peak Torque Amplitude, Task, and Tool Mass. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 250–263. [Google Scholar] [CrossRef]
- IX SHOULDER AIR Exoskeleton|SUITX. Available online: https://www.suitx.com/en/products/ix-shoulder-air-exoskeleton (accessed on 18 August 2024).
- Arnoux, B.; Farr, A.; Boccara, V.; Vignais, N. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task. Int. J. Environ. Res. Public Health 2023, 20, 3153. [Google Scholar] [CrossRef]
- HAPO FRONT: Innovation for the Upper Limbs. Available online: https://ergosante.fr/en/exosquelette-leger-hapo-ms/ (accessed on 18 August 2024).
- Huysamen, K.; Bosch, T.; de Looze, M.; Stadler, K.S.; Graf, E.; O’Sullivan, L.W. Evaluation of a Passive Exoskeleton for Static Upper Limb Activities. Appl. Ergon. 2018, 70, 148–155. [Google Scholar] [CrossRef]
- Ruprecht, A.; Daniel, S.; Konrad, S.S. Design of a Passive, Iso-Elastic Upper Limb Exoskeleton for Gravity Compensation. ROBOMECH J. 2016, 3, 12. [Google Scholar]
- van Sluijs, R.M.; Rodriguez-Cianca, D.; Sanz-Morère, C.B.; Massardi, S.; Bartenbach, V.; Torricelli, D. A Method to Quantify the Reduction of Back and Hip Muscle Fatigue of Lift-Support Exoskeletons. Wearable Technol. 2023, 4, 2–13. [Google Scholar] [CrossRef] [PubMed]
- van Sluijs, R.M.; Wehrli, M.; Brunner, A.; Lambercy, O. Evaluation of the Physiological Benefits of a Passive Back-Support Exoskeleton during Lifting and Working in Forward Leaning Postures. J. Biomech. 2023, 149, 111489. [Google Scholar] [CrossRef] [PubMed]
- Exoskeleton LiftSuit. Available online: https://www.auxivo.com/liftsuit (accessed on 18 August 2024).
- Wan, C.L.; Ishioka, T.; Kanda, C.; Osawa, K.; Kodama, K.; Tanaka, E. Development of a Three-Layer Fabric Mechanism for a Passive-Type Assistive Suit. J. Robot. Mechatron. 2022, 34, 1348–1360. [Google Scholar] [CrossRef]
- Koopman, A.S.; Kingma, I.; Faber, G.S.; De Looze, M.P.; Van Dieën, J.H. Effects of a Passive Exoskeleton on the Mechanical Loading of the Low Back in Static Holding Tasks. J. Biomech. 2019, 83, 97–103. [Google Scholar] [CrossRef]
- Ornwipa, T.; Stephan, M.; Divya, S.; Catherine, T. Potential Exoskeleton Uses for Reducing Low Back Muscular Activity during Farm Tasks. Am. J. Ind. Med. 2020, 63, 1017–1028. [Google Scholar] [PubMed]
- Laevo V2. Available online: https://www.laevo-exoskeletons.com/en/laevo-v2 (accessed on 18 August 2024).
- Mohammad Mehdi, A.; Jack, G.; Athulya, A.S.; Chang, S.E.; Alan, T.A. A Passive Exoskeleton Reduces Peak and Mean EMG during Symmetric and Asymmetric Lifting. J. Electromyogr. Kinesiol. 2019, 47, 25–34. [Google Scholar]
- Lowe’s and Virginia Tech Develop Exosuit Designed to Help Retail Employees. Available online: https://news.vt.edu/content/news_vt_edu/en/articles/2017/05/eng-lowesexosuit.html (accessed on 18 August 2024).
- Liao, Y.-T.; Ishioka, T.; Mishima, K.; Kanda, C.; Kodama, K.; Tanaka, E. Development and Evaluation of a Close-Fitting Assistive Suit for Back and Arm Muscle—E.z.UP. J. Robot. Mechatron. 2020, 32, 157–172. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Han, B.; Wu, L.; Li, H. Design of a Human Lower Limbs Exoskeleton for Biomechanical Energy Harvesting and Assist Walking. Energy Technol. 2021, 9, 2000726. [Google Scholar] [CrossRef]
- Pillai, M.V.; Van Engelhoven, L.; Kazerooni, H. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work. Hum. Factors 2020, 62, 489–500. [Google Scholar] [CrossRef]
- SUITX. Exoskeletons for Daily Work. Available online: https://www.suitx.com/en/home (accessed on 18 August 2024).
- Mitterlehner, L.; Li, Y.X.; Wolf, M. Objective and Subjective Evaluation of a Passive Low-Back Exoskeleton during Simulated Logistics Tasks. Wearable Technol. 2023, 4, e24. [Google Scholar] [CrossRef] [PubMed]
- Fox, S.; Aranko, O.; Heilala, J.; Vahala, P. Exoskeletons. J. Manuf. Technol. Manag. 2020, 31, 1261–1280. [Google Scholar] [CrossRef]
- Hidayah, R.; Sui, D.; Wade, K.A.; Chang, B.-C.; Agrawal, S. Passive Knee Exoskeletons in Functional Tasks: Biomechanical Effects of a SpringExo Coil-Spring on Squats. Wearable Technol. 2021, 2, e7. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Guo, S.; Wang, P.; Wu, Y.; Niu, L.; Liu, D. Design and Optimization Analysis of an Adaptive Knee Exoskeleton. Chin. J. Mech. Eng. 2024, 37, 104. [Google Scholar] [CrossRef]
- Danko, A.-D.; Straka, M. Exoskeletons-Robotic Suits Improving Work in Logistics. Acta Logist. 2022, 9, 405–410. [Google Scholar] [CrossRef]
- Thakur, C.; Ogawa, K.; Kurita, Y. Active Passive Nature of Assistive Wearable Gait Augment Suit for Enhanced Mobility. J. Robot. Mechatron. 2018, 30, 717–728. [Google Scholar] [CrossRef]
- Uchiyama, K.; Ito, T.; Tomori, H. Development of Endoskeleton Type Knee Joint Assist Orthosis Using McKibben Type Artificial Muscle. J. Robot. Mechatron. 2022, 34, 390–401. [Google Scholar] [CrossRef]
- Yang, C.-J.; Zhang, J.-F.; Chen, Y.; Dong, Y.-M.; Zhang, Y. A Review of Exoskeleton-Type Systems and Their Key Technologies. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2008, 222, 1599–1612. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, W.; Chen, W.; Bai, S.; Zhang, J.; Wang, J. Design of a Passive Lower Limb Exoskeleton for Walking Assistance with Gravity Compensation. Mech. Mach. Theory 2020, 150, 103840. [Google Scholar] [CrossRef]
- Persson, N.-K.; Martinez, J.G.; Zhong, Y.; Maziz, A.; Jager, E.W.H. Actuating Textiles: Next Generation of Smart Textiles. Adv. Mater. Technol. 2018, 3, 1700397. [Google Scholar] [CrossRef]
- Tanaka, H.; Hashimoto, M. Development of a Non-Exoskeletal Structure for a Robotic Suit. Int. J. Autom. Technol. 2014, 8, 201–207. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Smets, M.; Ranganathan, S. Effects of an Arm-support Exoskeleton on Perceived Work Intensity and Musculoskeletal Discomfort: An 18-month Field Study in Automotive Assembly. Am. J. Ind. Med. 2021, 64, 905–914. [Google Scholar] [CrossRef] [PubMed]
- Kazerooni, H.; Tung, W.; Pillai, M. Evaluation of Trunk-Supporting Exoskeleton. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2019, 63, 1080–1083. [Google Scholar] [CrossRef]
- Bogue, R. Exoskeletons and Robotic Prosthetics: A Review of Recent Developments. Ind. Robot 2009, 36, 421–427. [Google Scholar] [CrossRef]
- López-Méndez, S.; Martínez-Tejada, H.V.; Valencia-García, M.F. Development of an Armored Upper Limb Exoskeleton. Rev. Fac. Ing. 2020, 95, 109–117. [Google Scholar] [CrossRef]
- HULCTM. Available online: https://bleex.me.berkeley.edu/project/hulc/ (accessed on 18 August 2024).
- Abhilash, C.R.; Sriraksha, M.; Haq, M.A.; Narahari, N.S. Design and Evaluation of Exoskeleton for Static Conditions Using Indian Anthropometric Considerations. J. Eng. Des. Technol. 2022, 20, 1154–1171. [Google Scholar]
- Balaguier, R.; Madeleine, P.; Rose-Dulcina, K.; Vuillerme, N. Effects of a Worksite Supervised Adapted Physical Activity Program on Trunk Muscle Endurance, Flexibility, and Pain Sensitivity Among Vineyard Workers. J. Agromed. 2017, 22, 200–214. [Google Scholar] [CrossRef]
- Das, B.; Gangopadhyay, S. Prevalence of Musculoskeletal Disorders and Physiological Stress Among Adult, Male Potato Cultivators of West Bengal, India. Asia-Pac. J. Public Health 2015, 27, NP1669–NP1682. [Google Scholar] [CrossRef]
- Das, B.; Gangopadhyay, S. Occupational Agricultural Injuries among the Preadolescent Workers of West Bengal, India. Int. J. Adolesc. Med. Health 2018, 33, 20180178. [Google Scholar] [CrossRef]
- Kee, D. Participatory Ergonomic Interventions for Improving Agricultural Work Environment: A Case Study in a Farming Organization of Korea. Appl. Sci. 2022, 12, 2263. [Google Scholar] [CrossRef]
- Dembia, C.L.; Silder, A.; Uchida, T.K.; Hicks, J.L.; Delp, S.L. Simulating Ideal Assistive Devices to Reduce the Metabolic Cost of Walking with Heavy Loads. PLoS ONE 2017, 12, e0180320. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Zhang, J.; Li, B.; Zhou, L. Kinematic Analysis and Dynamic Optimization Simulation of a Novel Unpowered Exoskeleton with Parallel Topology. J. Robot. 2019, 2019, 2953830. [Google Scholar] [CrossRef]
- Mansouri, M.; Reinbolt, J.A. A Platform for Dynamic Simulation and Control of Movement Based on OpenSim and MATLAB. J. Biomech. 2012, 45, 1517–1521. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Villamañan, M.D.C.; Gonzalez-Vargas, J.; Torricelli, D.; Moreno, J.C.; Pons, J.L. Compliant Lower Limb Exoskeletons: A Comprehensive Review on Mechanical Design Principles. J. Neuroeng. Rehabil. 2019, 16, 55. [Google Scholar] [CrossRef]
- Paterna, M.; De Benedictis, C.; Ferraresi, C. Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles. Machines 2024, 12, 388. [Google Scholar] [CrossRef]
- Tiboni, M.; Borboni, A.; Vérité, F.; Bregoli, C.; Amici, C. Sensors and Actuation Technologies in Exoskeletons: A Review. Sensors 2022, 22, 884. [Google Scholar] [CrossRef]
- Kim, S.; Anwar, G.; Kazerooni, H. High-Speed Communication Network for Controls with the Application on the Exoskeleton. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 1, pp. 355–360. [Google Scholar]
- Jang, E.-H.; Cho, Y.-J.; Chi, S.-Y.; Lee, J.-Y.; Kang, S.S.; Chun, B.-T. Recognition of Walking Intention Using Multiple Bio/Kinesthetic Sensors for Lower Limb Exoskeletons. In Proceedings of the ICCAS 2010, Gyeonggi-do, Republic of Korea, 27–30 October 2010; pp. 1802–1805. [Google Scholar]
- Neťuková, S.; Bejtic, M.; Malá, C.; Horáková, L.; Kutílek, P.; Kauler, J.; Krupička, R. Lower Limb Exoskeleton Sensors: State-of-the-Art. Sensors 2022, 22, 9091. [Google Scholar] [CrossRef]
- Yin, W.; Chen, Y.; Reddy, C.; Zheng, L.; Mehta, R.K.; Zhang, X. Flexible Sensor-Based Biomechanical Evaluation of Low-Back Exoskeleton Use in Lifting. Ergonomics 2024, 67, 182–193. [Google Scholar] [CrossRef]
- Díez, J.A.; Blanco, A.; Catalán, J.M.; Badesa, F.J.; Lledó, L.D.; García-Aracil, N. Hand Exoskeleton for Rehabilitation Therapies with Integrated Optical Force Sensor. Adv. Mech. Eng. 2018, 10, 1687814017753881. [Google Scholar] [CrossRef]
- Yang, H.; Xiao, X.; Li, Z.; Li, K.; Cheng, N.; Li, S.; Low, J.H.; Jing, L.; Fu, X.; Achavananthadith, S. Wireless Ti3C2T x MXene Strain Sensor with Ultrahigh Sensitivity and Designated Working Windows for Soft Exoskeletons. ACS Nano 2020, 14, 11860–11875. [Google Scholar] [CrossRef]
- Karacan, K.; Meyer, J.T.; Bozma, H.I.; Gassert, R.; Samur, E. An Environment Recognition and Parameterization System for Shared-Control of a Powered Lower-Limb Exoskeleton. In Proceedings of the 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), New York, NY, USA, 29 November–1 December 2020; pp. 623–628. [Google Scholar]
- Kumar, A.S.A.; George, B.; Mukhopadhyay, S.C. Technologies and Applications of Angle Sensors: A Review. IEEE Sens. J. 2021, 21, 7195–7206. [Google Scholar] [CrossRef]
- Wu, J.; Meng, Z.; Zhang, X.; Mi, W.; Yan, Y. Capacitive Angle Sensor Research Using COMSOL Multiphysics. Appl. Sci. 2023, 13, 2937. [Google Scholar] [CrossRef]
- George, B.; Madhu Mohan, N.; Jagadeesh Kumar, V. A Linear Variable Differential Capacitive Transducer for Sensing Planar Angles. IEEE Trans. Instrum. Meas. 2008, 57, 736–742. [Google Scholar] [CrossRef]
- Hou, B.; Zhou, B.; Song, M.; Lin, Z.; Zhang, R. A Novel Single-Excitation Capacitive Angular Position Sensor Design. Sensors 2016, 16, 1196. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Zhou, B.; Yi, L.; Xing, B.; Li, X.; Wei, Q.; Zhang, R. High-Precision Incremental Capacitive Angle Encoder Developed by Micro Fabrication Technology. IEEE Trans. Ind. Electron. 2021, 68, 6318–6327. [Google Scholar] [CrossRef]
- Pu, H.; Wang, H.; Liu, X.; Yu, Z.; Peng, K. A High-Precision Absolute Angular Position Sensor With Vernier Capacitive Arrays Based on Time Grating. IEEE Sens. J. 2019, 19, 8626–8634. [Google Scholar] [CrossRef]
- Goto, D.; Sakaue, Y.; Kobayashi, T.; Kawamura, K.; Okada, S.; Shiozawa, N. Bending Angle Sensor Based on Double-Layer Capacitance Suitable for Human Joint. IEEE Open J. Eng. Med. Biol. 2023, 4, 129–140. [Google Scholar] [CrossRef]
- Shi, J.; Zhou, B.; Xing, B.; Wei, Q.; Zhang, R. A Miniatured Fully Integrated High Resolution and Accuracy Capacitive Angle Encoder. IEEE Sens. J. 2024, 24, 7264–7272. [Google Scholar] [CrossRef]
- Fan, X.; Yu, Z.; Peng, K.; Chen, Z.; Liu, X. A Compact and High-Precision Capacitive Absolute Angular Displacement Sensor. IEEE Sens. J. 2020, 20, 11173–11182. [Google Scholar] [CrossRef]
- Wang, H.; Peng, K.; Liu, X.; Yu, Z.; Chen, Z. Design and Realization of a Compact High-Precision Capacitive Absolute Angular Position Sensor Based on Time Grating. IEEE Trans. Ind. Electron. 2021, 68, 3548–3557. [Google Scholar] [CrossRef]
- Crea, S.; Manca, S.; Parri, A.; Zheng, E.; Mai, J.; Lova, R.M.; Vitiello, N.; Wang, Q. Controlling a Robotic Hip Exoskeleton With Noncontact Capacitive Sensors. IEEE/ASME Trans. Mechatron. 2019, 24, 2227–2235. [Google Scholar] [CrossRef]
- Anandan, N.; Varma Muppala, A.; George, B. A Flexible, Planar-Coil-Based Sensor for Through-Shaft Angle Sensing. IEEE Sens. J. 2018, 18, 10217–10224. [Google Scholar] [CrossRef]
- Sun, S.; Han, Y.; Zhang, H.; He, Z.; Tang, Q. A Novel Inductive Angular Displacement Sensor With Multi-Probe Symmetrical Structure. IEEE Sens. J. 2022, 22, 3087–3096. [Google Scholar] [CrossRef]
- Wu, L.; Su, R.; Tong, P.; A, Y.; Wu, Y. An Inductive Sensor for the Angular Displacement Measurement of Large and Hollow Rotary Machinery. IEEE Sens. J. 2023, 23, 21709–21717. [Google Scholar] [CrossRef]
- Tang, Q.; Peng, D.; Wu, L.; Chen, X. An Inductive Angular Displacement Sensor Based on Planar Coil and Contrate Rotor. IEEE Sens. J. 2015, 15, 3947–3954. [Google Scholar] [CrossRef]
- Tavassolian, M.; Cuthbert, T.J.; Napier, C.; Peng, J.; Menon, C. Textile-Based Inductive Soft Strain Sensors for Fast Frequency Movement and Their Application in Wearable Devices Measuring Multiaxial Hip Joint Angles during Running. Adv. Intell. Syst. 2020, 2, 1900165. [Google Scholar] [CrossRef]
- Anoop, C.S.; George, B. A New Variable Reluctance-Hall Effect Based Angle Sensor. In Proceedings of the 2012 Sixth International Conference on Sensing Technology (ICST), Kolkata, India, 18–21 December 2012; pp. 454–459. [Google Scholar]
- Palacín, J.; Martínez, D. Improving the Angular Velocity Measured with a Low-Cost Magnetic Rotary Encoder Attached to a Brushed DC Motor by Compensating Magnet and Hall-Effect Sensor Misalignments. Sensors 2021, 21, 4763. [Google Scholar] [CrossRef]
- Adamiec, P.; Barbero, J.; Cordero, E.; Dainesi, P.; Steiner, N. Radiation Hard Contactless Angular Position Sensor Based on Hall Effect. IEEE Trans. Nucl. Sci. 2016, 63, 2971–2978. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Wu, R.-H.; Xu, S.T. Applications of Linear Hall-Effect Sensors on Angular Measurement. In Proceedings of the 2011 IEEE International Conference on Control Applications (CCA), Denver, CO, USA, 28–30 September 2011; pp. 479–482. [Google Scholar]
- Ibarra, L.; Galluzzi, R.; Escobar, G.; Ramirez-Mendoza, R.A. An Angular Speed and Position FLL-Based Estimator Using Linear Hall-Effect Sensors. IEEE Access 2021, 9, 168004–168014. [Google Scholar] [CrossRef]
- Sharma, G.; Dhall, A.; Subramanian, R. MARS: A Multiview Contrastive Approach to Human Activity Recognition From Accelerometer Sensor. IEEE Sens. Lett. 2024, 8, 6002004. [Google Scholar] [CrossRef]
- Mallol-Ragolta, A.; Semertzidou, A.; Pateraki, M.; Schuller, B. harAGE: A Novel Multimodal Smartwatch-Based Dataset for Human Activity Recognition. In Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), Jodhpur, India, 15–18 December 2021; pp. 1–7. [Google Scholar]
- Lazzaroni, M.; Fanti, V.; Sposito, M.; Chini, G.; Draicchio, F.; Natali, C.D.; Caldwell, D.G.; Ortiz, J. Improving the Efficacy of an Active Back-Support Exoskeleton for Manual Material Handling Using the Accelerometer Signal. IEEE Robot. Autom. Lett. 2022, 7, 7716–7721. [Google Scholar] [CrossRef]
- Lancini, M.; Serpelloni, M.; Pasinetti, S.; Guanziroli, E. Healthcare Sensor System Exploiting Instrumented Crutches for Force Measurement during Assisted Gait of Exoskeleton Users. IEEE Sens. J. 2016, 16, 8228–8237. [Google Scholar] [CrossRef]
- Cortese, M.; Cempini, M.; De Almeida Ribeiro, P.R.; Soekadar, S.R.; Carrozza, M.C.; Vitiello, N. A Mechatronic System for Robot-Mediated Hand Telerehabilitation. IEEE/ASME Trans. Mechatron. 2015, 20, 1753–1764. [Google Scholar] [CrossRef]
- Lonini, L.; Shawen, N.; Scanlan, K.; Rymer, W.Z.; Kording, K.P.; Jayaraman, A. Accelerometry-Enabled Measurement of Walking Performance with a Robotic Exoskeleton: A Pilot Study. J. Neuroeng. Rehabil. 2016, 13, 35. [Google Scholar] [CrossRef]
- Zanotto, D.; Lenzi, T.; Stegall, P.; Agrawal, S.K. Improving Transparency of Powered Exoskeletons Using Force/Torque Sensors on the Supporting Cuffs. In Proceedings of the 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 24–26 June 2013; pp. 1–6. [Google Scholar]
- Wang, Y.; Zahedi, A.; Zhao, Y.; Zhang, D. Extracting Human-Exoskeleton Interaction Torque for Cable-Driven Upper-Limb Exoskeleton Equipped with Torque Sensors. IEEE/ASME Trans. Mechatron. 2022, 27, 4269–4280. [Google Scholar] [CrossRef]
- Choi, D.; Oh, J. Development of the Cartesian Arm Exoskeleton System (CAES) Using a 3-Axis Force/Torque Sensor. Int. J. Control Autom. Syst. 2013, 11, 976–983. [Google Scholar] [CrossRef]
- Masood, J.; Mateos, L.A.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.; Caldwell, D. Active Safety Functions for Industrial Lower Body Exoskeletons: Concept and Assessment; Springer: Berlin/Heidelberg, Germany, 2017; pp. 299–303. [Google Scholar]
- Wang, R.-J.; Huang, H.-P. AVSER—Active Variable Stiffness Exoskeleton Robot System: Design and Application for Safe Active-Passive Elbow Rehabilitation. In Proceedings of the 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kaohsiung, Taiwan, 11–14 July 2012; pp. 220–225. [Google Scholar]
- Sujatha, C. Strain Gauge-Based Equipment. In Vibration, Acoustics and Strain Measurement: Theory and Experiments; Springer: Berlin/Heidelberg, Germany, 2023; pp. 305–349. [Google Scholar]
- Preethichandra, D.M.G.; Suntharavadivel, T.G.; Kalutara, P.; Piyathilaka, L.; Izhar, U. Influence of Smart Sensors on Structural Health Monitoring Systems and Future Asset Management Practices. Sensors 2023, 23, 8279. [Google Scholar] [CrossRef]
- Chiu, V.L.; Raitor, M.; Collins, S.H. Design of a Hip Exoskeleton with Actuation in Frontal and Sagittal Planes. IEEE Trans. Med. Robot. Bionics 2021, 3, 773–782. [Google Scholar] [CrossRef]
- Witte, K.A.; Fatschel, A.M.; Collins, S.H. Design of a Lightweight, Tethered, Torque-Controlled Knee Exoskeleton. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1646–1653. [Google Scholar]
- Vitiello, N.; Lenzi, T.; Roccella, S.; De Rossi, S.M.M.; Cattin, E.; Giovacchini, F.; Vecchi, F.; Carrozza, M.C. NEUROExos: A Powered Elbow Exoskeleton for Physical Rehabilitation. IEEE Trans. Robot. 2012, 29, 220–235. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, H. A Lower-Back Robotic Exoskeleton: Industrial Handling Augmentation Used to Provide Spinal Support. IEEE Robot. Autom. Mag. 2018, 25, 95–106. [Google Scholar] [CrossRef]
- Hwang, B.; Jeon, D. A Method to Accurately Estimate the Muscular Torques of Human Wearing Exoskeletons by Torque Sensors. Sensors 2015, 15, 8337–8357. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Shim, M.; Ahn, D.H.; Son, B.J.; Kim, S.-Y.; Kim, D.Y.; Baek, Y.S.; Cho, B.-K. Design of a Knee Exoskeleton Using Foot Pressure and Knee Torque Sensors. Int. J. Adv. Robot. Syst. 2015, 12, 112. [Google Scholar] [CrossRef]
- Li, M.; Deng, J.; Zha, F.; Qiu, S.; Wang, X.; Chen, F. Towards Online Estimation of Human Joint Muscular Torque with a Lower Limb Exoskeleton Robot. Appl. Sci. 2018, 8, 1610. [Google Scholar] [CrossRef]
- Khan, A.M.; Yun, D.; Han, J.-S.; Shin, K.; Han, C.-S. Upper Extremity Assist Exoskeleton Robot. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 892–898. [Google Scholar]
- Yang, C.; Yu, L.; Xu, L.; Yan, Z.; Hu, D.; Zhang, S.; Yang, W. Current Developments of Robotic Hip Exoskeleton toward Sensing, Decision, and Actuation: A Review. Wearable Technol. 2022, 3, e15. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, D.S.; Alien, S.K.; Backus, D.A. Exoskeleton with EMG Based Active Assistance for Rehabilitation. In Proceedings of the 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005, Chicago, IL, USA, 28 June–1 July 2005; pp. 333–336. [Google Scholar]
- Anam, K.; Al-Jumaily, A.A. Active Exoskeleton Control Systems: State of the Art. Procedia Eng. 2012, 41, 988–994. [Google Scholar] [CrossRef]
- Eliseichev, E.A.; Mikhailov, V.V.; Borovitskiy, I.V.; Zhilin, R.M.; Senatorova, E.O. A Review of Devices for Detection of Muscle Activity by Surface Electromyography. Biomed. Eng. 2022, 56, 69–74. [Google Scholar] [CrossRef]
- Yang, C.; Wei, Q.; Wu, X.; Ma, Z.; Chen, Q.; Wang, X.; Wang, H.; Fan, W. Physical Extraction and Feature Fusion for Multi-Mode Signals in a Measurement System for Patients in Rehabilitation Exoskeleton. Sensors 2018, 18, 2588. [Google Scholar] [CrossRef]
- Peternel, L.; Noda, T.; Petrič, T.; Ude, A.; Morimoto, J.; Babič, J. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation. PLoS ONE 2016, 11, e0148942. [Google Scholar] [CrossRef]
- Vaca Benitez, L.M.; Tabie, M.; Will, N.; Schmidt, S.; Jordan, M.; Kirchner, E.A. Exoskeleton Technology in Rehabilitation: Towards an EMG-Based Orthosis System for Upper Limb Neuromotor Rehabilitation. J. Robot. 2013, 2013, 610589. [Google Scholar] [CrossRef]
- Gui, K.; Liu, H.; Zhang, D. A Practical and Adaptive Method to Achieve EMG-Based Torque Estimation for a Robotic Exoskeleton. IEEE/ASME Trans. Mechatron. 2019, 24, 483–494. [Google Scholar] [CrossRef]
- Yin, G.; Zhang, X.; Chen, D.; Li, H.; Chen, J.; Chen, C.; Lemos, S. Processing Surface EMG Signals for Exoskeleton Motion Control. Front. Neurorobot. 2020, 14, 40. [Google Scholar] [CrossRef] [PubMed]
- Milosevic, B.; Benatti, S.; Farella, E. Design Challenges for Wearable EMG Applications. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1432–1437. [Google Scholar]
- De Luca, C.J.; Gilmore, L.D.; Kuznetsov, M.; Roy, S.H. Filtering the Surface EMG Signal: Movement Artifact and Baseline Noise Contamination. J. Biomech. 2010, 43, 1573–1579. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, D.; Jiang, N.; Sheng, X.; Farina, D.; Zhu, X. User Adaptation in Long-Term, Open-Loop Myoelectric Training: Implications for EMG Pattern Recognition in Prosthesis Control. J. Neural Eng. 2015, 12, 046005. [Google Scholar] [CrossRef] [PubMed]
- Roriz, P.; Carvalho, L.; Frazão, O.; Santos, J.L.; Simões, J.A. From Conventional Sensors to Fibre Optic Sensors for Strain and Force Measurements in Biomechanics Applications: A Review. J. Biomech. 2014, 47, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Govaerts, R.; De Bock, S.; Provyn, S.; Vanderborght, B.; Roelands, B.; Meeusen, R.; De Pauw, K. The Impact of an Active and Passive Industrial Back Exoskeleton on Functional Performance. Ergonomics 2024, 67, 597–618. [Google Scholar] [CrossRef]
- Casolo, F.; Cinquemani, S.; Cocetta, M. On Active Lower Limb Exoskeletons Actuators. In Proceedings of the 2008 5th International Symposium on Mechatronics and Its Applications, Amman, Jordan, 27–29 May 2008; pp. 1–6. [Google Scholar]
- Beyl, P.; Van Damme, M.; Van Ham, R.; Vanderborght, B.; Lefeber, D. Pleated Pneumatic Artificial Muscle-Based Actuator System as a Torque Source for Compliant Lower Limb Exoskeletons. IEEE/ASME Trans. Mechatron. 2013, 19, 1046–1056. [Google Scholar] [CrossRef]
- Spath, W.E.; Walter, W.W. Feasibility of Integrating Multiple Types of Electroactive Polymers to Develop an Artificial Human Muscle. In Proceedings of the ASME 2010 International Mechanical Engineering Congress and Exposition, Vancouver, BC, Canada, 12–18 November 2010; Volume 44465, pp. 661–667. [Google Scholar]
- Aguilar-Sierra, H.; Lopez, R.; Yu, W.; Salazar, S.; Lozano, R. A Lower Limb Exoskeleton with Hybrid Actuation. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 695–700. [Google Scholar]
- Noda, T.; Teramae, T.; Ugurlu, B.; Morimoto, J. Development of an Upper Limb Exoskeleton Powered via Pneumatic Electric Hybrid Actuators with Bowden Cable. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 3573–3578. [Google Scholar]
- Greco, C.; Kotak, P.; Pagnotta, L.; Lamuta, C. The Evolution of Mechanical Actuation: From Conventional Actuators to Artificial Muscles. Int. Mater. Rev. 2022, 67, 575–619. [Google Scholar] [CrossRef]
- Hussain, F.; Goecke, R.; Mohammadian, M. Exoskeleton Robots for Lower Limb Assistance: A Review of Materials, Actuation, and Manufacturing Methods. Proc. Inst. Mech. Eng. Part H 2021, 235, 1375–1385. [Google Scholar] [CrossRef]
- Yang, L.; Qu, C.; Jia, B.; Qu, S. The Design of an Affordable Fault-Tolerant Control System of the Brushless DC Motor for an Active Waist Exoskeleton. Neural Comput. Applic. 2023, 35, 2027–2037. [Google Scholar] [CrossRef]
- Lee, D.; McLain, B.J.; Kang, I.; Young, A.J. Young Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton. IEEE Trans. Biomed. Eng. 2021, 68, 2870–2879. [Google Scholar] [CrossRef]
- Zhang, T.; Tran, M.; Huang, H. Design and Experimental Verification of Hip Exoskeleton With Balance Capacities for Walking Assistance. IEEE/ASME Trans. Mechatron. 2018, 23, 274–285. [Google Scholar] [CrossRef]
- Lee, M.; Kim, J.; Hyung, S.; Lee, J.; Seo, K.; Park, Y.J.; Cho, J.; Choi, B.-K.; Shim, Y.; Choi, H. A Compact Ankle Exoskeleton With a Multiaxis Parallel Linkage Mechanism. IEEE/ASME Trans. Mechatron. 2021, 26, 191–202. [Google Scholar] [CrossRef]
- Lee, H.; Ferguson, P.W.; Rosen, J. Chapter 11—Lower Limb Exoskeleton Systems—Overview. In Wearable Robotics; Rosen, J., Ferguson, P.W., Eds.; Academic Press: New York, NY, USA, 2020; pp. 207–229. ISBN 978-0-12-814659-0. [Google Scholar]
- Mahdavian, M.; Toudeshki, A.G.; Yousefi-Koma, A. Design and Fabrication of a 3DoF Upper Limb Exoskeleton. In Proceedings of the 2015 3rd RSI International Conference on Robotics and Mechatronics (ICROM), Tehran, Iran, 7–9 October 2015; pp. 342–346. [Google Scholar]
- Akdoğan, E.; Adli, M.A. The Design and Control of a Therapeutic Exercise Robot for Lower Limb Rehabilitation: Physiotherabot. Mechatronics 2011, 21, 509–522. [Google Scholar] [CrossRef]
- González-Mendoza, A.; Quiñones-Urióstegui, I.; Salazar-Cruz, S.; Perez-Sanpablo, A.-I.; López-Gutiérrez, R.; Lozano, R. Design and Implementation of a Rehabilitation Upper-Limb Exoskeleton Robot Controlled by Cognitive and Physical Interfaces. J. Bionic Eng. 2022, 19, 1374–1391. [Google Scholar] [CrossRef] [PubMed]
- Bouteraa, Y.; Ben Abdallah, I.; Elmogy, A. Design and Control of an Exoskeleton Robot with EMG-Driven Electrical Stimulation for Upper Limb Rehabilitation. Ind. Robot 2020, 47, 489–501. [Google Scholar] [CrossRef]
- Fang, Y.; Hou, B.; Wu, X.; Wang, Y.; Osawa, K.; Tanaka, E. A Stepper Motor-Powered Lower Limb Exoskeleton with Multiple Assistance Functions for Daily Use by the Elderly. J. Robot. Mechatron. 2023, 35, 601–611. [Google Scholar] [CrossRef]
- Sun, M.; Ouyang, X.; Mattila, J.; Yang, H.; Hou, G. One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton. Chin. J. Mech. Eng. 2021, 34, 31. [Google Scholar] [CrossRef]
- Takamitsu, A.; Hirokazu, N.; Hiroshi, K. Development of Muscle Suit and Application to Factory Laborers. In Proceedings of the 2009 International Conference on Mechatronics and Automation, Changchun, China, 9–12 August 2009; pp. 1027–1032. [Google Scholar]
- Xiang, C.; Giannaccini, M.E.; Theodoridis, T.; Hao, L.; Nefti-Meziani, S.; Davis, S. Variable Stiffness Mckibben Muscles with Hydraulic and Pneumatic Operating Modes. Adv. Robot. 2016, 30, 889–899. [Google Scholar] [CrossRef]
- Aliman, N.; Ramli, R.; Amiri, M.S. Actuators and Transmission Mechanisms in Rehabilitation Lower Limb Exoskeletons: A Review. Biomed. Eng./Biomed. Tech. 2024, 69, 327–345. [Google Scholar] [CrossRef]
- Huo, W.; Mohammed, S.; Moreno, J.C.; Amirat, Y. Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art. IEEE Syst. J. 2016, 10, 1068–1081. [Google Scholar] [CrossRef]
- Lee, D.; Song, B.; Park, S.Y.; Baek, Y.S. Development and Control of an Electro-Hydraulic Actuator System for an Exoskeleton Robot. Appl. Sci. 2019, 9, 4295. [Google Scholar] [CrossRef]
- McCall, J.V.; Buckner, G.D.; Kamper, D.G. Soft Pneumatic Actuators for Pushing Fingers into Extension. J. Neuroeng. Rehabil. 2024, 21, 146. [Google Scholar] [CrossRef] [PubMed]
- Ridremont, T.; Singh, I.; Bruzek, B.; Jamieson, A.; Gu, Y.; Merzouki, R.; Wijesundara, M.B.J. Pneumatically Actuated Soft Robotic Hand and Wrist Exoskeleton for Motion Assistance in Rehabilitation. Actuators 2024, 13, 180. [Google Scholar] [CrossRef]
- Mišković, L.; Dežman, M.; Petrič, T. Pneumatic Exoskeleton Joint With a Self-Supporting Air Tank and Stiffness Modulation: Design, Modeling, and Experimental Evaluation. IEEE/ASME Trans. Mechatron. 2024, 29, 3415–3426. [Google Scholar] [CrossRef]
- Inose, H.; Mohri, S.; Arakawa, H.; Okui, M.; Koide, K.; Yamada, Y.; Kikutani, I.; Nakamura, T. Semi-Endoskeleton-Type Waist Assist AB-Wear Suit Equipped with Compressive Force Reduction Mechanism. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 6014–6019. [Google Scholar]
- Pirjade, Y.M.; Londhe, D.R.; Patwardhan, N.M.; Kotkar, A.U.; Shelke, T.P.; Ohol, S.S. Design and Fabrication of a Low-Cost Human Body Lower Limb Exoskeleton. In Proceedings of the 2020 6th International Conference on Mechatronics and Robotics Engineering (ICMRE), Barcelona, Spain, 12–15 February 2020; pp. 32–37. [Google Scholar]
- Zhao, Y.; Huang, C.; Zou, Y.; Zou, K.; Zou, X.; Xue, J.; Li, X.; Koh, K.H.; Wang, X.; Lai, W.C.K.; et al. Integrated Hydraulic-Driven Wearable Robot for Knee Assistance. J. Shanghai Jiaotong Univ. (Sci.) 2023, 28, 289–295. [Google Scholar] [CrossRef]
- Fan, W.; Dai, Z.; Zhang, B.; He, L.; Pan, M.; Yi, J.; Liu, T. HyExo: A Novel Quasi-Passive Hydraulic Exoskeleton for Load-Carrying Augmentation. IEEE/ASME Trans. Mechatron. 2024, 1–12. [Google Scholar] [CrossRef]
- Copaci, D.; Arias, J.; Moreno, L.; Blanco, D. Shape Memory Alloy (SMA)-Based Exoskeletons for Upper Limb Rehabilitation. In Rehabilitation of the Human Bone-Muscle System; Olaru, A., Ed.; IntechOpen: London, UK, 2022; ISBN 978-1-80355-165-4. [Google Scholar]
- Ramos, O.; Múnera, M.; Moazen, M.; Wurdemann, H.; Cifuentes, C.A. Assessment of Soft Actuators for Hand Exoskeletons: Pleated Textile Actuators and Fiber-Reinforced Silicone Actuators. Front. Bioeng. Biotechnol. 2022, 10, 924888. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Meng, Q.; Yu, W.; Wu, Z.; Xu, R.; Zeng, Q.; Zhou, Z.; Yang, T.; Yu, H. Design of a SMA-Based Soft Composite Structure for Wearable Rehabilitation Gloves. Front. Neurorobot. 2023, 17, 1047493. [Google Scholar] [CrossRef]
- Villoslada, A.; Flores, A.; Copaci, D.; Blanco, D.; Moreno, L. High-Displacement Flexible Shape Memory Alloy Actuator for Soft Wearable Robots. Robot. Auton. Syst. 2015, 73, 91–101. [Google Scholar] [CrossRef]
- Hope, J.; McDaid, A. Development of Wearable Wrist and Forearm Exoskeleton with Shape Memory Alloy Actuators. J. Intell. Robot. Syst. 2017, 86, 397–417. [Google Scholar] [CrossRef]
- Park, S.J.; Choi, K.; Rodrigue, H.; Park, C.H. Fabric Muscle with a Cooling Acceleration Structure for Upper Limb Assistance Soft Exosuits. Sci. Rep. 2022, 12, 11398. [Google Scholar] [CrossRef] [PubMed]
- Hadi, A.; Alipour, K.; Kazeminasab, S.; Elahinia, M. ASR Glove: A Wearable Glove for Hand Assistance and Rehabilitation Using Shape Memory Alloys. J. Intell. Mater. Syst. Struct. 2018, 29, 1575–1585. [Google Scholar] [CrossRef]
- Jeong, J.; Yasir, I.B.; Han, J.; Park, C.H.; Bok, S.-K.; Kyung, K.-U. Design of Shape Memory Alloy-Based Soft Wearable Robot for Assisting Wrist Motion. Appl. Sci. 2019, 9, 4025. [Google Scholar] [CrossRef]
- Yang, J.; Wei, T.; Shi, H. A Novel Hybrid Actuator for The Hand Exoskeleton. In Proceedings of the 2021 IEEE 11th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Jiaxing, China, 27–31 July 2021; pp. 271–276. [Google Scholar]
- Zhang, J.; Cong, M.; Liu, D.; Du, Y.; Ma, H. Design of an Active and Passive Control System for a Knee Exoskeleton with Variable Stiffness Based on a Shape Memory Alloy. J. Intell. Robot. Syst. 2021, 101, 45. [Google Scholar] [CrossRef]
- Xie, Q.; Meng, Q.; Yu, W.; Xu, R.; Wu, Z.; Wang, X.; Yu, H. Design of a Soft Bionic Elbow Exoskeleton Based on Shape Memory Alloy Spring Actuators. Mech. Sci. 2023, 14, 159–170. [Google Scholar] [CrossRef]
- Park, S.J.; Park, C.H. Suit-Type Wearable Robot Powered by Shape-Memory-Alloy-Based Fabric Muscle. Sci. Rep. 2019, 9, 9157. [Google Scholar] [CrossRef]
- Kim, C.; Kim, G.; Lee, Y.; Lee, G.; Han, S.; Kang, D.; Koo, S.H.; Koh, J. Shape Memory Alloy Actuator-Embedded Smart Clothes for Ankle Assistance. Smart Mater. Struct. 2020, 29, 055003. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Jiang, Y.; Zang, W.; Cao, P.; Tian, M.; Ning, N.; Zhang, L. Dielectric Elastomer Actuators for Artificial Muscles: A Comprehensive Review of Soft Robot Explorations. Resour. Chem. Mater. 2022, 1, 308–324. [Google Scholar] [CrossRef]
- Madsen, F.B.; Daugaard, A.E.; Hvilsted, S.; Skov, A.L. The Current State of Silicone-Based Dielectric Elastomer Transducers. Macromol. Rapid Commun. 2016, 37, 378–413. [Google Scholar] [CrossRef]
- Wissler, M.; Mazza, E. Mechanical Behavior of an Acrylic Elastomer Used in Dielectric Elastomer Actuators. Sens. Actuators A Phys. 2007, 134, 494–504. [Google Scholar] [CrossRef]
- Yao, J.; Liu, X.; Sun, H.; Liu, S.; Jiang, Y.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. Thermoplastic Polyurethane Dielectric Elastomers with High Actuated Strain and Good Mechanical Strength by Introducing Ester Group Grafted Polymethylvinylsiloxane. Ind. Eng. Chem. Res. 2021, 60, 4883–4891. [Google Scholar] [CrossRef]
- Carpi, F.; De Rossi, D. Improvement of Electromechanical Actuating Performances of a Silicone Dielectric Elastomer by Dispersion of Titanium Dioxide Powder. IEEE Trans. Dielect. Electr. Insul. 2005, 12, 835–843. [Google Scholar] [CrossRef]
- Lu, H.; Yang, D. Enhanced Actuation Performance of Silicone Rubber via the Synergistic Effect of Polyaniline Particles and Silicone Oil. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107200. [Google Scholar] [CrossRef]
- Gallone, G.; Carpi, F.; De Rossi, D.; Levita, G.; Marchetti, A. Dielectric Constant Enhancement in a Silicone Elastomer Filled with Lead Magnesium Niobate–Lead Titanate. Mater. Sci. Eng. C 2007, 27, 110–116. [Google Scholar] [CrossRef]
- Li, Y.; Hashimoto, M. Design and Prototyping of a Novel Lightweight Walking Assist Wear Using PVC Gel Soft Actuators. Sens. Actuators A Phys. 2016, 239, 26–44. [Google Scholar] [CrossRef]
- Bahrami, S.; Dumond, P. Testing of Coiled Nylon Actuators for Use in Spastic Hand Exoskeletons. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1853–1856. [Google Scholar]
- Kalita, B.; Leonessa, A.; Dwivedy, S.K. A Review on the Development of Pneumatic Artificial Muscle Actuators: Force Model and Application. Actuators 2022, 11, 288. [Google Scholar] [CrossRef]
- Kim, M.; Heo, J.; Rodrigue, H.; Lee, H.; Pané, S.; Han, M.; Ahn, S. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Adv. Mater. 2023, 35, 2208517. [Google Scholar] [CrossRef]
- Maksimkin, A.V.; Dayyoub, T.; Telyshev, D.V.; Gerasimenko, A.Y. Electroactive Polymer-Based Composites for Artificial Muscle-like Actuators: A Review. Nanomaterials 2022, 12, 2272. [Google Scholar] [CrossRef]
- Postol, N.; Barton, J.; Wakely, L.; Bivard, A.; Spratt, N.J.; Marquez, J. “Are We There yet?” Expectations and Experiences with Lower Limb Robotic Exoskeletons: A Qualitative Evaluation of the Therapist Perspective. Disabil. Rehabil. 2023, 46, 1023–1030. [Google Scholar] [CrossRef]
- Yeh, T.-N.; Chou, L.-W. User Experience Evaluation of Upper Limb Rehabilitation Robots: Implications for Design Optimization: A Pilot Study. Sensors 2023, 23, 9003. [Google Scholar] [CrossRef]
- Papp-Schmitt, E. Embodied Experience of Exoskeletons; Design Research Society: Boston, MA, USA, 2024. [Google Scholar]
- Cordova, A.F.; Morales, H.; Astudillo-Salinas, F.; Zhang, H.; Minchala, L.I. Deployment of a High-Speed Communication Network to Enable Real-Time Control of a Lower Limb Robotic Exoskeleton. Int. J. Innov. Comput. Inf. Control 2023, 18, 1–11. [Google Scholar]
- Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of CAN Bus Security Challenges. Sensors 2020, 20, 2364. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, Y.; Zhang, Y. A CAN-Based Inertial Sensor Network for Lower Limb Exoskeleton. In Proceedings of the 2014 IEEE International Conference on Communiction Problem-solving, Beijing, China, 5–7 December 2014; pp. 473–476. [Google Scholar]
- Zhou, X.; Yu, Z.; Wang, M.; Chen, D.; Ye, X. Design of Control System for Lower Limb Exoskeleton Robot. In Proceedings of the 2022 8th International Conference on Control, Automation and Robotics (ICCAR), Xiamen, China, 8–10 April 2022; pp. 122–126. [Google Scholar]
- Cao, W.; Ma, Y.; Chen, C.; Zhang, J.; Wu, X. Hardware Circuits Design and Performance Evaluation of a Soft Lower Limb Exoskeleton. IEEE Trans. Biomed. Circuits Syst. 2022, 16, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Preethichandra, D.M.G.; Piyathilaka, L.; Izhar, U.; Samarasinghe, R.; De Silva, L.C. Wireless Body Area Networks and Their Applications—A Review. IEEE Access 2023, 11, 9202–9220. [Google Scholar] [CrossRef]
- Kaur, J.; Lamba, S.; Saini, P. Advanced Encryption Standard: Attacks and Current Research Trends. In Proceedings of the 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India, 4–5 March 2021; pp. 112–116. [Google Scholar]
- Matta, P.; Arora, M.; Sharma, D. A Comparative Survey on Data Encryption Techniques: Big Data Perspective. Mater. Today Proc. 2021, 46, 11035–11039. [Google Scholar] [CrossRef]
- Huysamen, K.; de Looze, M.; Bosch, T.; Ortiz, J.; Toxiri, S.; O’Sullivan, L.W. Assessment of an Active Industrial Exoskeleton to Aid Dynamic Lifting and Lowering Manual Handling Tasks. Appl. Ergon. 2018, 68, 125–131. [Google Scholar] [CrossRef]
- Nomura, S.; Takahashi, Y.; Sahashi, K.; Murai, S.; Kawai, M.; Taniai, Y.; Naniwa, T. Power Assist Control Based on Human Motion Estimation Using Motion Sensors for Powered Exoskeleton without Binding Legs. Appl. Sci. 2019, 9, 164. [Google Scholar] [CrossRef]
- Grazi, L.; Trigili, E.; Proface, G.; Giovacchini, F.; Crea, S.; Vitiello, N. Design and Experimental Evaluation of a Semi-Passive Upper-Limb Exoskeleton for Workers With Motorized Tuning of Assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 2276–2285. [Google Scholar] [CrossRef]
- Rocon, E.; Ruiz, A.F.; Raya, R.; Schiele, A.; Pons, J.L. Human–Robot Physical Interaction. In Wearable Robots: Biomechatronic Exoskeletons; Pons, J.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Tröster, M.; Wagner, D.; Müller-Graf, F.; Maufroy, C.; Schneider, U.; Bauernhansl, T. Biomechanical Model-Based Development of an Active Occupational Upper-Limb Exoskeleton to Support Healthcare Workers in the Surgery Waiting Room. Int. J. Environ. Res. Public Health 2020, 17, 5140. [Google Scholar] [CrossRef]
- Talaty, M.; Esquenazi, A.; Briceno, J.E. Differentiating Ability in Users of the ReWalk(TM) Powered Exoskeleton: An Analysis of Walking Kinematics. IEEE Int. Conf. Rehabil. Robot. 2013, 2013, 6650469. [Google Scholar] [CrossRef]
- Ren, Z.; Roozing, W.; Tsagarakis, N.G. The eLeg: A Novel Efficient Leg Prototype Powered by Adjustable Parallel Compliant Actuation Principles. In Proceedings of the 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids), Beijing, China, 6–9 November 2018; pp. 1–9. [Google Scholar]
- Chen, B.; Ma, H.; Qin, L.Y.; Gao, F.; Chan, K.M.; Law, S.W.; Qin, L.; Liao, W.H. Recent Developments and Challenges of Lower Extremity Exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Dollar, A.M.; Herr, H. Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art. IEEE Trans. Robot. 2008, 24, 144–158. [Google Scholar] [CrossRef]
- Cenciarini, M.; Dollar, A.M. Biomechanical Considerations in the Design of Lower Limb Exoskeletons. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 1–6. [Google Scholar]
- Eguren, D.; Cestari, M.; Luu, T.P.; Kilicarslan, A.; Steele, A.; Contreras-Vidal, J.L. Design of a Customizable, Modular Pediatric Exoskeleton for Rehabilitation and Mobility. In Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), Bari, Italy, 6–9 October 2019; pp. 2411–2416. [Google Scholar]
- Liu, Y.-X.; Zhang, L.; Wang, R.; Smith, C.; Gutierrez-Farewik, E.M. Weight Distribution of a Knee Exoskeleton Influences Muscle Activities During Movements. IEEE Access 2021, 9, 91614–91624. [Google Scholar] [CrossRef]
- Zoss, A.B.; Kazerooni, H.; Chu, A. Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 2006, 11, 128–138. [Google Scholar] [CrossRef]
- Dollar, A.M.; Herr, H. Design of a Quasi-Passive Knee Exoskeleton to Assist Running. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 747–754. [Google Scholar]
- Jarrassé, N.; Proietti, T.; Crocher, V.; Robertson, J.; Sahbani, A.; Morel, G.; Roby-Brami, A. Robotic Exoskeletons: A Perspective for the Rehabilitation of Arm Coordination in Stroke Patients. Front. Hum. Neurosci. 2014, 8, 947. [Google Scholar] [CrossRef]
- Chong, Y.Z.; Koh, Y.M. Development of an Affordable Customisable Upper Extremities Pneumatically-Powered Exoskeleton. In Proceedings of the TENCON 2018-2018 IEEE Region 10 Conference, Jeju, Republic of Korea, 28–31 October 2018; pp. 1653–1656. [Google Scholar]
- Pérez-Bahena, M.H.; Niño-Suarez, P.A.; Avilés Sánchez, O.F.; Beleño, R.H.; Caldas, O.I.; Pellico-Sánchez, O.I. Trends in Robotic Systems for Lower Limb Rehabilitation. IETE Tech. Rev. 2024, 41, 98–109. [Google Scholar] [CrossRef]
- Consumer Product Safety Commission. Potential Hazards Associated with Emerging and Future Technologies; Staff Report; Consumer Product Safety Commission: Washington, DC, USA, 2017.
- Li, G.; Li, Z.; Su, C.Y.; Xu, T. Active Human-Following Control of an Exoskeleton Robot With Body Weight Support. IEEE Trans. Cybern. 2023, 53, 7367–7379. [Google Scholar] [CrossRef]
- Pina, D.S.; Fernandes, A.A.; Jorge, R.N.; Gabriel, J. Designing the Mechanical Frame of an Active Exoskeleton for Gait Assistance. Adv. Mech. Eng. 2018, 10, 1687814017743664. [Google Scholar] [CrossRef]
- Zahedi, A.; Wang, Y.; Lau, N.; Ang, W.T.; Zhang, D. A Bamboo-Inspired Exoskeleton (BiEXO) Based on Carbon Fiber for Shoulder and Elbow Joints. IEEE Trans. Med. Robot. Bionics 2023, 5, 375–386. [Google Scholar] [CrossRef]
- Cui, L.; Phan, A.; Allison, G. Design and Fabrication of a Three Dimensional Printable Non-Assembly Articulated Hand Exoskeleton for Rehabilitation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 4627–4630. [Google Scholar]
- da Silva, J.L.G.F.; Gonçalves, S.M.B.; da Silva, H.H.P.; da Silva, M.P.T. Three-Dimensional Printed Exoskeletons and Orthoses for the Upper Limb—A Systematic Review. Prosthet. Orthot. Int. 2022, 48, 590–602. [Google Scholar] [CrossRef]
- Bartenbach, V.; Gort, M.; Riener, R. Concept and Design of a Modular Lower Limb Exoskeleton. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 649–654. [Google Scholar]
- Nycz, C.J.; Delph, M.A.; Fischer, G.S. Modeling and Design of a Tendon Actuated Soft Robotic Exoskeleton for Hemiparetic Upper Limb Rehabilitation. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 3889–3892. [Google Scholar]
- Miller-Jackson, T.M.; Natividad, R.F.; Lim, D.Y.L.; Hernandez-Barraza, L.; Ambrose, J.W.; Yeow, R.C.-H. A Wearable Soft Robotic Exoskeleton for Hip Flexion Rehabilitation. Front. Robot. AI 2022, 9, 835237. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qiu, J.; Cheng, H.; Zheng, X. Analysis of Human–Exoskeleton System Interaction for Ergonomic Design. Hum. Factors 2023, 65, 909–922. [Google Scholar] [CrossRef] [PubMed]
- Zeiaee, A.; Zarrin, R.S.; Eib, A.; Langari, R.; Tafreshi, R. CLEVERarm: A Lightweight and Compact Exoskeleton for Upper-Limb Rehabilitation. IEEE Robot. Autom. Lett. 2021, 7, 1880–1887. [Google Scholar] [CrossRef]
- Bougrinat, Y.; Achiche, S.; Raison, M. Design and Development of a Lightweight Ankle Exoskeleton for Human Walking Augmentation. Mechatronics 2019, 64, 102297. [Google Scholar] [CrossRef]
- Peng, X.; Dai, Z.; Liu, J.; Wang, Y. Design and Simulation of Sandwich Structure of Exoskeleton Backplate Based on Biological Inspiration. J. Phys. Conf. Ser. 2021, 1885, 052066. [Google Scholar] [CrossRef]
- Ersin, Ç.; Yaz, M. Implementation and Comparison of Wearable Exoskeleton Arm Design with Fuzzy Logic and Machine Learning Control. J. Sens. 2024, 2024, 6808322. [Google Scholar] [CrossRef]
- Ren, J.-L.; Chien, Y.-H.; Chia, E.-Y.; Fu, L.-C.; Lai, J.-S. Deep Learning Based Motion Prediction for Exoskeleton Robot Control in Upper Limb Rehabilitation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 5076–5082. [Google Scholar]
- Shi, Y.; Zhao, Y. The Online Learning Architecture with Edge Computing for High-Level Control for Assisting Patients. arXiv 2023, arXiv:2309.05130. [Google Scholar] [CrossRef]
- Su, D.; Hu, Z.; Wu, J.; Shang, P.; Luo, Z. Review of Adaptive Control for Stroke Lower Limb Exoskeleton Rehabilitation Robot Based on Motion Intention Recognition. Front. Neurorobot. 2023, 17, 1186175. [Google Scholar] [CrossRef]
- Lerner, Z.F.; Harvey, T.A.; Lawson, J.L. A Battery-Powered Ankle Exoskeleton Improves Gait Mechanics in a Feasibility Study of Individuals with Cerebral Palsy. Ann. Biomed. Eng. 2019, 47, 1345–1356. [Google Scholar] [CrossRef]
- Mooney, L.M.; Rouse, E.J.; Herr, H.M. Autonomous Exoskeleton Reduces Metabolic Cost of Walking. In Proceedings of the 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Chicago, IL, USA, 26–30 August 2014; pp. 3065–3068. [Google Scholar]
- Singla, A.; Dhand, S.; Dhawad, A.; Virk, G.S. Toward Human-Powered Lower Limb Exoskeletons: A Review. In Harmony Search and Nature Inspired Optimization Algorithms, Proceedings of the Theory and Applications, ICHSA 2018, Gurgaon, India, 7–9 February 2018; Springer: Singapore, 2019; pp. 783–795. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, M.; Zhong, H.; Ji, X.; Xia, D.; Luo, X.; Yang, Y. Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot. Micromachines 2022, 13, 571. [Google Scholar] [CrossRef]
- Zhou, M.; Al-Furjan, M.S.H.; Zou, J.; Liu, W. A Review on Heat and Mechanical Energy Harvesting from Human–Principles, Prototypes and Perspectives. Renew. Sustain. Energy Rev. 2018, 82, 3582–3609. [Google Scholar] [CrossRef]
- Inoue, H.; Noritsugu, T. Development of Upper-Limb Power Assist Machine Using Linkage Mechanism—Drive Mechanism and Its Applications. J. Robot. Mechatron. 2018, 30, 214–222. [Google Scholar] [CrossRef]
- Tang, Z.; Zhang, K.; Sun, S.; Gao, Z.; Zhang, L.; Yang, Z. An Upper-Limb Power-Assist Exoskeleton Using Proportional Myoelectric Control. Sensors 2014, 14, 6677–6694. [Google Scholar] [CrossRef] [PubMed]
- Sarcos Demonstrates Powered Exosuit That Gives Workers Super Strength—IEEE Spectrum. Available online: https://spectrum.ieee.org/sarcos-guardian-xo-powered-exoskeleton (accessed on 17 August 2024).
- Christensen, S.; Rafique, S.; Bai, S. Design of a Powered Full-Body Exoskeleton for Physical Assistance of Elderly People. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211053534. [Google Scholar] [CrossRef]
- Fontana, M.; Vertechy, R.; Marcheschi, S.; Salsedo, F.; Bergamasco, M. The Body Extender: A Full-Body Exoskeleton for the Transport and Handling of Heavy Loads. IEEE Robot. Autom. Mag. 2014, 21, 34–44. [Google Scholar] [CrossRef]
- Bogue, R. Exoskeletons—A Review of Industrial Applications. Ind. Robot 2019, 45, 585–590. [Google Scholar] [CrossRef]
- Jones, A.; Piyathilaka, L.; Sul, J.; Preethichandra, D.M.G.; Jayasuriya, A.; Taylor, B. Design and Musculoskeletal Modelling of a Back Support Exoskeleton (BSE) for Child Care Workers. In Proceedings of the 2023 5th International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 7–8 December 2023; pp. 221–226. [Google Scholar]
- Proud, J.K.; Lai, D.T.; Mudie, K.L.; Carstairs, G.L.; Billing, D.C.; Garofolini, A.; Begg, R.K. Exoskeleton Application to Military Manual Handling Tasks. Hum. Factors 2022, 64, 527–554. [Google Scholar] [CrossRef]
- Kapsalyamov, A.; Hussain, S.; Jamwal, P.K. State-of-the-Art Assistive Powered Upper Limb Exoskeletons for Elderly. IEEE Access 2020, 8, 178991–179001. [Google Scholar] [CrossRef]
- Jung, M.M.; Ludden, G.D. Potential of Exoskeleton Technology to Assist Older Adults with Daily Living. In Proceedings of the Extended Abstracts of the 2018 CHI Conference, Montreal, QC, Canada, 21–26 April 2018; pp. 1–6. [Google Scholar]
- Liu, H.; Wu, C.; Lin, S.; Chen, Y.; Hu, Y.; Xu, T.; Yuan, W.; Li, Y. Finger Flexion and Extension Driven by a Single Motor in Robotic Glove Design. Adv. Intell. Syst. 2023, 5, 2200274. [Google Scholar] [CrossRef]
- Naruoka, Y.; Hiramitsu, N.; Mitsuya, Y. A Study of Power-Assist Technology to Reduce Body Burden During Loading and Unloading Operations by Support of Knee Joint Motion. J. Robot. Mechatron. 2016, 28, 949–957. [Google Scholar] [CrossRef]
- German Bionic Cray X. Available online: https://germanbionic.com/en/solutions/exoskeletons/crayx/ (accessed on 16 July 2024).
- Chittar, O.A.; Barve, S.B. Waist-Supportive Exoskeleton: Systems and Materials. Mater. Today Proc. 2022, 57, 840–845. [Google Scholar] [CrossRef]
- Cyberdyne. What Is HAL. Available online: https://www.cyberdyne.jp/english/products/HAL/index.html (accessed on 16 July 2023).
- Pérez Vidal, A.F.; Rumbo Morales, J.Y.; Ortiz Torres, G.; Sorcia Vázquez, F.D.J.; Cruz Rojas, A.; Brizuela Mendoza, J.A.; Rodríguez Cerda, J.C. Soft Exoskeletons: Development, Requirements, and Challenges of the Last Decade. Actuators 2021, 10, 166. [Google Scholar] [CrossRef]
- Sarkisian, S.V.; Ishmael, M.K.; Lenzi, T. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Crea, S.; Beckerle, P.; De Looze, M.; De Pauw, K.; Grazi, L.; Kermavnar, T.; Masood, J.; O’Sullivan, L.W.; Pacifico, I.; Rodriguez-Guerrero, C.; et al. Occupational Exoskeletons: A Roadmap toward Large-Scale Adoption. Methodology and Challenges of Bringing Exoskeletons to Workplaces. Wearable Technol. 2021, 2, e11. [Google Scholar] [CrossRef] [PubMed]
- Van Dijsseldonk, R.B.; Rijken, H.; Van Nes, I.J.W.; Van De Meent, H.; Keijsers, N.L.W. Predictors of Exoskeleton Motor Learning in Spinal Cord Injured Patients. Disabil. Rehabil. 2021, 43, 1982–1988. [Google Scholar] [CrossRef]
- Gaudet, G.; Raison, M.; Achiche, S. Current Trends and Challenges in Pediatric Access to Sensorless and Sensor-Based Upper Limb Exoskeletons. Sensors 2021, 21, 3561. [Google Scholar] [CrossRef]
- Dhatrak, P.; Durge, J.; Dwivedi, R.K.; Pradhan, H.K.; Kolke, S. Interactive Design and Challenges on Exoskeleton Performance for Upper-Limb Rehabilitation: A Comprehensive Review. Int. J. Interact. Des. Manuf. 2024. [Google Scholar] [CrossRef]
- He, Y.; Eguren, D.; Luu, T.P.; Contreras-Vidal, J.L. Risk Management and Regulations for Lower Limb Medical Exoskeletons: A Review. MDER Med. Devices Evid. Res. 2017, 10, 89–107. [Google Scholar] [CrossRef]
- Rupal, B.S.; Rafique, S.; Singla, A.; Singla, E.; Isaksson, M.; Virk, G.S. Lower-Limb Exoskeletons: Research Trends and Regulatory Guidelines in Medical and Non-Medical Applications. Int. J. Adv. Robot. Syst. 2017, 14, 172988141774355. [Google Scholar] [CrossRef]
- Baniqued, P.D.E.; Baldovino, R.G.; Bugtai, N.T. Design Considerations in Manufacturing Cost-Effective Robotic Exoskeletons for Upper Extremity Rehabilitation. In Proceedings of the 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu City, Philippines, 9–12 December 2015; pp. 1–5. [Google Scholar]
Name of the Exoskeleton | Passive Element | Supporting Areas | Country of Origin |
---|---|---|---|
Ekso EVO [15,16] | Spring Based Actuator | Shoulder | USA |
Hilti Exo-001 [10,12] | Elastic Straps | Shoulder | USA |
PULE (Passive Upper Limb Exoskeleton) [17] | Gas Springs | Shoulder | Taiwan |
Levitate exoskeleton [18,19] | Springs | Shoulder | USA |
Model-based Biomechanical Exoskeleton [20] | Springs | Shoulder | Germany |
TasKi [21] | Springs | Shoulder | Japan |
Skelex 360 [10,22] | Springs | Shoulder | The Netherlands |
Pole harvesting support exoskeleton [23] | Springs | Shoulder | Malaysia |
H-Vex [24,25] | Springs | Shoulder | Korea |
ShoulderX by Suitx [26,27] | Springs | Shoulder | USA |
Harpos MS [28,29] | Springs | Shoulder & Elbow | France |
Static upper limb activity supporting exoskeleton [30] | Springs | Arm (Upper Limb) | Switzerland |
Parallelogram type Exoskeleton [31] | Springs | Arm (Upper Limb) | Switzerland |
Hero Wear Apex [15,16] | Elastic Straps | Back | USA |
LiftSuit v2.0 (Auxivo AG) [32,33,34] | Spring (Fabric) | Lower Back | Switzerland |
Three-layer Fabric Mechanism, Assistive Suit [35] | Elastic Fabric | Lower Back | Japan |
IPWE (Industrial Passive Waist-assistant Exoskeleton) [35] | Elastic Straps | Lower Back | China |
Laevo 2.0 [36,37,38] | Elastic Fabrics | Lower Back | The Netherlands |
VT-Lowe’s Exoskeleton [39,40] | Carbon Fiber Legs | Lower Back | USA |
Ez-UP [41] | Deformable and Non-Deformable Belts with Quadrilateral structured Elastic Fabric | Back and Upper Limbs | Japan |
Lower limb energy harvesting and transmission exoskeleton (EHTE) [42] | Flat Spiral Springs | Lower Limbs | China |
LegX by Suitx [43,44] | Springs | Knees | USA |
Paexo Back from Ottobock [45] | Springs | Back | Germany |
Reference/Year | Actuator Type | Location/Purpose | Weight (g) | Power (W) | Torque/Force |
---|---|---|---|---|---|
Takamitsu et al. [153]/2009 | Pneumatic | Upper limb/Elbow, shoulder, and waist support | 5800 (entire exoskeleton) | N/A | Elbow & Shoulder 45 Nm Waist 90 Nm |
Akdoğan and Adli [148]/2011 | Servo motor | Lower limb/Rehabilitation | 1600 | 570 | 1.15 Nm (stall) |
Inose et al. [161]/2017 | Pneumatic | Upper limb/back support | 2900 (entire exoskeleton) | N/A | 350 N @ 60 kPa |
Zhang et al. [144]/2018 | BLDC motor | Lower limb/Walking assistance | 600 | 90 | 0.44 Nm |
Pirjade et al. [162]/2020 | DC motor | Lower limb/Hip and knee support | 210 | 100 | 1 Nm (peak) 0.02 Nm (rated) |
Bouteraa et al. [150]/2020 | Servo motor | Upper limb/Elbow support for rehabilitation | 152 | 36 | 2.4 Nm (stall) |
Mahdavian et al. [147]/2020 | Stepper motor | Upper limb/Arm support for rehabilitation | 470 | 24 | 1.85 Nm (stall) |
Lee et al. [145]/2021 | BLDC motor | Lower limb/Ankle support | 242 | 75 | 0.11 Nm |
Sun et al. [152]/2021 | Hydraulic | Lower limb/Walking assistance | 2500 | N/A | 1700 N @ 18 MPa (with 4 actuators) |
González-Mendoza et al. [149]/2022 | Servo motor | Upper limb/Elbow support | 153 | 93 | 1.68 Nm (rated) 8 Nm (stall) 20 N (axial) |
Servo motor | Upper limb/Wrist support | 55 | 8 | 1.47 Nm (Stall) | |
Fang et al. [151]/2023 | Stepper motor | Lower limb/Hip support for walking assistance | 320 | 60 | 13 Nm (stall) |
Stepper motor | Lower limb/Knee and ankle support for walking assistance | 320 | 55 | 6.5 Nm (stall) | |
Zhao et al. [163]/2023 | Hydraulic | Lower limb/Knee support | 1400 (without fluids) | N/A | 160 N @ 60 kPa |
Fan et al. [164]/2024 | Hydraulic | Lower limb/Waking assistance with extra loads | 4750 (actuator components) | N/A | 237 N @ 2.5 MPa |
Miškovic et al. [160]/2024 | Pneumatic | Lower limb/Knee support | 760 (without mechanical parts) | N/A | 15.94 Nm @ 800 kPa |
Reference/Year | Main SMA Element | Location/Purpose | Weight | Force/Torque |
---|---|---|---|---|
Villoslada et al. Universidad Carlos III de Madrid [168]/2015 | Wire (0.5 mm dia.) | Wrist | 300 g | 35 N |
Hadi et al. (Univ. of Tehran) [171]/2018 | Wire (0.25 mm dia.) | Hand rehabilitation | - | 10 N each finger (40 N grasping) |
Jeong et al. (Korea advanced institute of technology) [172]/2019 | Spring (150 mm max. deformed length) | Wrist motion | 151 g | 1.32 Nm |
Yang et al. (Northeastern University, China) [173]/2021 | Spring (113 mm max. deformed length) | Hand rehabilitation | - | 2.7 N |
Zhang et al. (Dalian Univ. of Technology) [174]/2021 | Wire (2 wires supported by bias spring) | Knee | 40 N | |
Xie et al. (Univ. of Shanghai, China) [167]/2023 | Springs with composite structure | Hand | 120 g | 6.4 N (max. for one finger) |
Xie et al. Univ. of Shanghai, China) [175]/2023 | Spring (4 springs) | Elbow | 230 g wearable (877 g total) | 100 N |
Communications Technology | Transmission Rate (/Mbps) | Transmission Distance (/m) | Maximum Connections | Power Consumption (/mW) | Transmission Mode |
---|---|---|---|---|---|
ZigBee | 0.2/0.04/0.25 | 10~300 | 216~264 | 3 | Point-to-point |
Infrared | 1.521/4/16 | 10~100 | 2 | 10 | Point-to-point |
HomeRF | 1/2 | 10~100 | 127 | 100 | Point-to-multipoint |
Bluetooth | 1/2/3 | 10~100 | 7 | 100 | Point-to-multipoint |
RFID | 0.212 | 10~100 | 2 | ~ | Point-to-point |
CAN bus | 0.05/0.125/0.25/0.5/0.8/1.0 | 40~1000 (wired) | 32~127 | Varies | Point-to-multipoint |
Technique | Type | Key Length (/bits) | Strengths | Weaknesses |
---|---|---|---|---|
AES | Symmetric | 128/192/256 | High security, efficient in hardware/software | Requires secure key management |
RSA | Asymmetric | 1024~4096 | High security for key exchange, widely supported | Slower for large data sets |
ECC | Asymmetric | 160~512 | Similar security to RSA with shorter key lengths | Complex implementation, parameter sensitivity |
TLS | Protocol | Varies based on the key type | End-to-end security, widely adopted | Requires proper configuration |
ChaCha20-Poly1305 | Symmetric with MAC | 256 | High performance, secure | Newer, less tested compared to AES |
Main Areas of the Supporting Area of the Body | Specific Area of Support | Name/Made | Power | Industry | Country of Origin | Year | Tasks That Can Be Supported |
---|---|---|---|---|---|---|---|
Upper Body | Upper Limb (Shoulder) | Armored 3DoF Shoulder Exoskeleton [59] | Active (Motors) | In research stage (military) | Spain | 2020 | Shoulder assistance |
H–Pulse [203] | Semi Passive (Springs and Active Support Control) | In research stage | Italy | 2020 | Overhead task Assistance | ||
Upper Limb (Elbow) | Power-Assist Exoskeleton [241] | Active (Pneumatic) | In research stage | China | 2014 | Power Assistance | |
Upper Limb | No name, design and lab testing only [240] | Active (Motos and Gears) | In research stage | Japan | 2018 | Lifting, Posture Support | |
Fingers | Double-Acting Soft Actuator (DASA) Based Robotic Glove [250] | Active (Pneumatic) | In research stage | China/Honk Kong | 2023 | Finger Extension/Flexion | |
Back | Lower Back | Dynamic Lifting aid Exoskeleton [201] | Active (Motors) | In research stage | Europe (Ireland, Netherlands, Italy) | 2017 | Lifting Assistance |
Lower Body | Lower Limbs | MIT lower-body exoskeleton [58] | Active (Motor) | Military | USA | 2009 | Heavy Lifting, Load Carrying |
Lower Limb Exoskeleton [202] | Active (Motors) | In research stage | Japan | 2019 | Walking Assistance | ||
AWGAS (Assistive Wearable Gait Augment Suit) [50] | Active Passive (Pneumatic and Gel Muscles) | In research stage | Japan | 2018 | Gait/Walking Assistance, Postural Assistance, Bent (Knee) Task Assistance | ||
Knees | Endoskeleton Type Knee Joint Assist [51] | Active (Pneumatic) | In research stage | Japan | 2021 | Posture Support (Half Sitting and Crouching) | |
Knee exoskeleton [251] | Active (Motors) | In research stage | Japan | 2016 | Lifting from Crouch Position | ||
Lower Limbs/Back | HULC [60,245] | Active (Hydraulic) | Military | USA | 2009 | Heavy Lifting, Load Carrying (Enhanced Load Capacity) | |
CRAY X [58,252] | Active (Motors) | Manufacturing | Germany | 2019 | Lifting Heavy Loads | ||
Model A/Model Y [245] | Active (Motors) | Various industries that handle goods | Japan | 2019 | Heavy Lifting, Posture Support | ||
Lower Back/Top of Lower Limbs | No name, Design only [253] | Active (Motors) | In research stage | India | 2022 | Heavy Lifting | |
Hip, Knee | Non-Exoskeletal Structure [55] | Active (Motors) | In research stage | Japan | 2014 | Walking Assistance, Power Assistance | |
Whole body | - | Raytheon/Sarcos exoskeleton [58] | Active (Motors) | Military | USA | 2009 | Heavy Lifting |
Separate modules for different areas | HAL [58,245,254] | Active (Motors) | Multipurpose | Japan | 2019 | Lifting, Posture Support | |
- | Tokyo University of Agriculture and Technology—Exoskeleton [58] | Active (Motors) | Agriculture (support for elderly workers) | Japan | 2009 | Posture Support | |
- | Guardian XO and Guardian XO MAX [242,245] | Active (Motors) | Manufacturing | USA | 2019 | Heavy Lifting |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Preethichandra, D.M.G.; Piyathilaka, L.; Sul, J.-H.; Izhar, U.; Samarasinghe, R.; Arachchige, S.D.; de Silva, L.C. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends. Sensors 2024, 24, 7095. https://doi.org/10.3390/s24217095
Preethichandra DMG, Piyathilaka L, Sul J-H, Izhar U, Samarasinghe R, Arachchige SD, de Silva LC. Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends. Sensors. 2024; 24(21):7095. https://doi.org/10.3390/s24217095
Chicago/Turabian StylePreethichandra, D. M. G., Lasitha Piyathilaka, Jung-Hoon Sul, Umer Izhar, Rohan Samarasinghe, Sanura Dunu Arachchige, and Liyanage C. de Silva. 2024. "Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends" Sensors 24, no. 21: 7095. https://doi.org/10.3390/s24217095
APA StylePreethichandra, D. M. G., Piyathilaka, L., Sul, J.-H., Izhar, U., Samarasinghe, R., Arachchige, S. D., & de Silva, L. C. (2024). Passive and Active Exoskeleton Solutions: Sensors, Actuators, Applications, and Recent Trends. Sensors, 24(21), 7095. https://doi.org/10.3390/s24217095