Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate
Abstract
:1. Introduction
2. Impedance Analysis Model of an Embedded Piezoelectric Plate Considering Initial Stress
2.1. Basic Equations
2.2. Theoretical Solutions of the Semi-Thickness Model
2.3. Theoretical Solutions of Impedance Characterizations for Embedded Piezoelectric Plate
3. Model Validation
3.1. Experimental Validation
3.2. Finite Element Method Validation
4. Numerical Results and Discussion
4.1. Effect of Initial Stress on Impedance Characterizations
4.2. The Sensitivities of Different Characterizations to Compressive Initial Stress and Procedures to Identify Static Stress
4.3. Influence of Geometric Dimensions on Sensitivities of Conductance Peak and Resistance Peak
4.4. The Influence of the Constraint Stiffness K, the External Viscous Damping Coefficient C and the Internal Complex Damping Factor Q on the Sensitivity of the Conductance Peak and Resistance Peak
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Notation List
Effective cross-sectional area | |
External viscous damping coefficient | |
Elastic stiffnesses at constant electric displacement | |
Elastic stiffness at constant electric field (superscript E is dropped in Section 2) | |
Electric displacement component along z direction | |
Electric field strength component along z direction | |
Euler number | |
Piezoelectric constant for e-type constitutive equations | |
Input voltage frequency (driving frequency) | |
Anti-resonant frequency | |
Resonant frequency | |
Thickness of piezoelectric plate | |
Semi-thickness of piezoelectric plate | |
Piezoelectric constant for h-type constitutive equations | |
Input current amplitude | |
Input current | |
Imaginary unit | |
External constraint stiffness | |
Thickness mode coupling factor | |
Internal complex damping factor | |
Input charge | |
Strain component along z direction | |
Stress component along z direction | |
Initial stress along z direction | |
Time | |
Input voltage amplitude | |
Input voltage | |
Longitudinal wave velocity | |
w | Displacement along z direction |
Dielectric constant at constant strain (superscript S is dropped in Section 2) | |
Mass density | |
ϕ | Electric potential |
Circular frequency of input voltage |
Appendix A
References
- Ou, J.P.; Li, H. Structural Health Monitoring in mainland China: Review and Future Trends. Struct. Health Monit. 2010, 9, 219–231. [Google Scholar]
- Tokognon, C.J.A.; Gao, B.; Tian, G.Y.; Yan, Y. Structural Health Monitoring Framework Based on Internet of Things: A Survey. IEEE Internet Things J. 2017, 4, 619–635. [Google Scholar] [CrossRef]
- Annamdas, V.G.M.; Bhalla, S.; Soh, C.K. Applications of structural health monitoring technology in Asia. Struct. Health Monit. 2017, 16, 324–346. [Google Scholar] [CrossRef]
- Taheri, S. A review on five key sensors for monitoring of concrete structures. Constr. Build. Mater. 2019, 204, 492–509. [Google Scholar] [CrossRef]
- Wang, X.F.; Shi, Z.F. Unified solutions for piezoelectric bilayer cantilevers and solution modifications. Smart Struct. Syst. 2015, 16, 759–780. [Google Scholar] [CrossRef]
- Wang, X.F.; Shi, Z.F.; Wang, J.J.; Xiang, H.J. A stack-based flex-compressive piezoelectric energy harvesting cell for large quasi-static loads. Smart Mater. Struct. 2016, 25, 055005. [Google Scholar] [CrossRef]
- Wang, X.F.; Shi, Z.F. Double piezoelectric energy harvesting cell: Modeling and experimental verification. Smart Mater. Struct. 2017, 26, 065002. [Google Scholar] [CrossRef]
- Wang, X.F.; Shi, Z.F.; Song, G. Analytical study of influence of boundary conditions on acoustic power transfer through an elastic barrier. Smart Mater. Struct. 2019, 28, 025004. [Google Scholar] [CrossRef]
- Wang, X.F.; Shi, Z.F. Non-uniform electric field in cantilevered piezoelectric energy harvesters: An improved distributed parameter electromechanical model. Compos. Struct. 2021, 272, 114136. [Google Scholar] [CrossRef]
- Wang, X.F.; Liu, H.; Zheng, H.D.; Liu, G.X.; Xu, D. Performance Correction and Parameters Identification Considering Non-Uniform Electric Field in Cantilevered Piezoelectric Energy Harvesters. Sensors 2024, 24, 4943. [Google Scholar] [CrossRef]
- Song, G.; Gu, H.; Mo, Y.L.; Hsu, T.T.C.; Dhonde, H. Concrete structural health monitoring using embedded piezoceramic transducers. Smart Mater. Struct. 2007, 16, 959–968. [Google Scholar] [CrossRef]
- Sun, Z.G.; Rocha, B.; Wu, K.T.; Mrad, N. A Methodological Review of Piezoelectric Based Acoustic Wave Generation and Detection Techniques for Structural Health Monitoring. Int. J. Aerospace Eng. 2013, 2013, 928627. [Google Scholar] [CrossRef]
- Kong, Q.; Hou, S.; Ji, Q.; Mo, Y.L.; Song, G. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates. Smart Mater. Struct. 2013, 22, 085025. [Google Scholar] [CrossRef]
- Mutlib, N.K.; Bin Baharom, S.; El-Shafie, A.; Nuawi, M.Z. Ultrasonic health monitoring in structural engineering: Buildings and bridges. Struct. Control Health Monit. 2016, 23, 409–422. [Google Scholar] [CrossRef]
- Kong, Q.; Robert, R.H.; Silva, P.; Mo, Y.L. Cyclic Crack Monitoring of a Reinforced Concrete Column under Simulated Pseudo-Dynamic Loading Using Piezoceramic-Based Smart Aggregates. Appl. Sci. 2016, 6, 341. [Google Scholar] [CrossRef]
- Na, W.S.; Baek, J. A Review of the Piezoelectric Electromechanical Impedance Based Structural Health Monitoring Technique for Engineering Structures. Sensors 2018, 18, 1307. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.F.; Yan, Q.X.; Vipulanandan, C.; Song, G. A novel method to monitor soft soil strength development in artificial ground freezing projects based on electromechanical impedance technique: Theoretical modeling and experimental validation. J. Intell. Mater. Syst. Struct. 2020, 31, 1477–1494. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, Q.X.; Wang, X.F.; Panda, G.P.; Vipulanandan, C.; Song, G. Measurement and evaluation of soft soil strength development during freeze-thaw process based on electromechanical impedance technique. Meas. Sci. Technol. 2020, 32, 025113. [Google Scholar] [CrossRef]
- Zhang, C.; Panda, G.P.; Yan, Q.X.; Zhang, W.L.; Vipulanandan, C.; Song, G.B. Monitoring early-age hydration and setting of portland cement paste by piezoelectric transducers via electromechanical impedance method. Constr. Build. Mater. 2020, 258, 120348. [Google Scholar] [CrossRef]
- Zhang, C.; Yan, Q.X.; Panda, G.P.; Wu, W.; Song, G.; Vipulanandan, C. Real-time monitoring stiffness degradation of hardened cement paste under uniaxial compression loading through piezoceramic-based electromechanical impedance method. Constr. Build. Mater. 2020, 256, 119395. [Google Scholar] [CrossRef]
- Pan, H.H.; Guan, J.C. Stress and strain behavior monitoring of concrete through electromechanical impedance using piezoelectric cement sensor and PZT sensor. Constr. Build. Mater. 2022, 324, 126685. [Google Scholar] [CrossRef]
- Ai, D.M.; Li, H.D.; Zhu, H.P. Flexure-critical stress and damage identification in RC beam structure using embedded piezoelectric transducers: 2D modelling and experimental investigations. Constr. Build. Mater. 2023, 409, 134017. [Google Scholar] [CrossRef]
- Karayannis, C.G.; Golias, E.; Naoum, M.C.; Chalioris, C.E. Efficacy and Damage Diagnosis of Reinforced Concrete Columns and Joints Strengthened with FRP Ropes Using Piezoelectric Transducers. Sensors 2022, 22, 8294. [Google Scholar] [CrossRef]
- Li, Z.X.; Yang, X.M.; Li, Z.J. Application of cement-based piezoelectric sensors for monitoring traffic flows. J. Transp. Eng. 2006, 132, 565–573. [Google Scholar] [CrossRef]
- Song, G.; Olmi, C.; Gu, H. An overheight vehicle-bridge collision monitoring system using piezoelectric transducers. Smart Mater. Struct. 2007, 16, 462–468. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.B.; Ou, J.P. A PZT-based smart aggregate for compressive seismic stress monitoring. Smart Mater. Struct. 2012, 21, 105035. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, H.B.; Ou, J.P. A PZT-based smart aggregate for seismic shear stress monitoring. Smart Mater. Struct. 2013, 22, 065012. [Google Scholar] [CrossRef]
- Zhang, H.B.; Hou, S.; Ou, J.P. Smart aggregate-based seismic stress monitoring system using a specially designed charge amplifier. J. Intell. Mater. Syst. Struct. 2016, 27, 418–426. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, S.; Ou, J. SA-based concrete seismic stress monitoring: The influence of non-uniform stress fields. Eng. Struct. 2019, 190, 66–75. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.K.; Wang, T.J. Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 2001, 38, 37–51. [Google Scholar] [CrossRef]
- Liu, H.; Kuang, Z.B.; Cai, Z.M. Propagation of Bleustein-Gulyaev waves in a prestressed layered piezoelectric structure. Ultrasonics 2003, 41, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Qian, Z.; Jin, F.; Wang, Z.; Kishimoto, K. Love waves propagation in a piezoelectric layered structure with initial stresses. Acta Mech. 2004, 171, 41–57. [Google Scholar] [CrossRef]
- Berlincourt, D.A.; Curran, D.R.; Jaffe, H. Piezoelectric and piezomagnetic materials and their function in transducers. In Physical Acoustics: Principles and Methods; Elsevier: Amsterdam, The Netherlands, 1964; Volume 1, Part A; pp. 170–267. [Google Scholar]
- Hu, Y.T.; Zhang, X.S.; Yang, J.S.; Jiang, Q. Transmitting electric energy through a metal wall by acoustic waves using piezoelectric transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2003, 50, 773–781. [Google Scholar] [CrossRef] [PubMed]
(MHz) | (MHz) | (GPa) | (C/m2) | |
---|---|---|---|---|
Sample 1 | 3.60 | 4.31 | 92.1 | 22.32 |
Sample 2 | 3.57 | 4.28 | 90.6 | 22.23 |
Sample 3 | 3.70 | 4.48 | 97.0 | 23.75 |
Density | |||
---|---|---|---|
7500 kg/m3 | 117 GPa | 23.3 C/m2 | 1470 × 8.854 pF/m |
Conductance Peak Value | Resonant Frequency | Resistance Peak Value | Anti-Resonant Frequency | |||||
---|---|---|---|---|---|---|---|---|
Sensitivity (μS/MPa) | Relative Sensitivity (1/MPa) | Sensitivity (Hz/MPa) | Relative Sensitivity (1/MPa) | Sensitivity (mΩ/MPa) | Relative Sensitivity (1/MPa) | Sensitivity (Hz/MPa) | Relative Sensitivity (1/MPa) | |
H = 1 mm | −2.04 | −7.76 × 10−6 | −6.99 | −3.45 × 10−6 | −2.65 | −3.45 × 10−6 | −7.91 | −3.44 × 10−6 |
H = 2 mm | −0.509 | −7.75 × 10−6 | −3.50 | −3.46 × 10−6 | −10.6 | −3.45 × 10−6 | −3.96 | −3.44 × 10−6 |
H = 3 mm | −0.226 | −7.73 × 10−6 | −2.34 | −3.47 × 10−6 | −23.9 | −3.47 × 10−6 | −2.64 | −3.44 × 10−6 |
H = 4 mm | −0.127 | −7.75 × 10−6 | −1.75 | −3.46 × 10−6 | −41.6 | −3.38 × 10−6 | −1.98 | −3.44 × 10−6 |
H = 5 mm | −0.0821 | −7.80 × 10−6 | −1.40 | −3.46 × 10−6 | −66.7 | −3.47 × 10−6 | −1.58 | −3.43 × 10−6 |
a = 25 mm2 | −0.127 | −7.74 × 10−6 | −3.50 | −3.46 × 10−6 | −42.5 | −3.46 × 10−6 | −3.96 | −3.44 × 10−6 |
a = 50 mm2 | −0.254 | −7.74 × 10−6 | −3.50 | −3.46 × 10−6 | −21.3 | −3.47 × 10−6 | −3.96 | −3.44 × 10−6 |
a = 100 mm2 | −0.509 | −7.75 × 10−6 | −3.50 | −3.46 × 10−6 | −10.6 | −3.45 × 10−6 | −3.96 | −3.44 × 10−6 |
a = 200 mm2 | −1.02 | −7.77 × 10−6 | −3.50 | −3.46 × 10−6 | −5.32 | −3.46 × 10−6 | −3.96 | −3.44 × 10−6 |
Conductance Peak Value | Resonant Frequency | Resistance Peak Value | Anti-Resonant Frequency | |||||
---|---|---|---|---|---|---|---|---|
Sensitivity (μS/MPa) | Relative Sensitivity (1/MPa) | Sensitivity (Hz/MPa) | Relative Sensitivity (1/MPa) | Sensitivity (mΩ/MPa) | Relative Sensitivity (1/MPa) | Sensitivity (Hz/MPa) | Relative Sensitivity (1/MPa) | |
K = 0 | −0.509 | −7.75 × 10−6 | −3.50 | −3.46 × 10−6 | −10.6 | −3.45 × 10−6 | −3.96 | −3.44 × 10−6 |
K = 5 × 108 N/m | −0.523 | −7.89 × 10−6 | −3.55 | −3.45 × 10−6 | −10.6 | −3.55 × 10−6 | −4.00 | −3.43 × 10−6 |
K = 1 × 109 N/m | −0.532 | −7.99 × 10−6 | −3.61 | −3.44 × 10−6 | −10.9 | −3.74 × 10−6 | −4.05 | −3.44 × 10−6 |
C = 0 | −0.509 | −7.75 × 10−6 | −3.50 | −3.46 × 10−6 | −10.6 | −3.45 × 10−6 | −3.96 | −3.44 × 10−6 |
C = 10 Ns/m | −0.357 | −6.75 × 10−6 | −3.49 | −3.45 × 10−6 | −4.46 | −1.89 × 10−6 | −3.95 | −3.43 × 10−6 |
C = 20 Ns/m | −0.265 | −5.99 × 10−6 | −3.48 | −3.44 × 10−6 | −1.36 | −0.66 × 10−6 | −3.95 | −3.43 × 10−6 |
Q = 0.01 | −1.01 | −7.74 × 10−6 | −3.47 | −3.43 × 10−6 | −21.5 | −3.50 × 10−6 | −3.95 | −3.43 × 10−6 |
Q = 0.02 | −0.509 | −7.75 × 10−6 | −3.50 | −3.46 × 10−6 | −10.6 | −3.45 × 10−6 | −3.96 | −3.44 × 10−6 |
Q = 0.03 | −0.340 | −7.76 × 10−6 | −3.50 | −3.46 × 10−6 | −7.07 | −3.45 × 10−6 | −3.94 | −3.42 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, H.; Liu, G.; Xu, D. Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate. Sensors 2024, 24, 7096. https://doi.org/10.3390/s24217096
Wang X, Liu H, Liu G, Xu D. Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate. Sensors. 2024; 24(21):7096. https://doi.org/10.3390/s24217096
Chicago/Turabian StyleWang, Xianfeng, Hui Liu, Guoxiong Liu, and Dan Xu. 2024. "Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate" Sensors 24, no. 21: 7096. https://doi.org/10.3390/s24217096
APA StyleWang, X., Liu, H., Liu, G., & Xu, D. (2024). Modeling of Static Stress Identification Using Electromechanical Impedance of Embedded Piezoelectric Plate. Sensors, 24(21), 7096. https://doi.org/10.3390/s24217096