Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture
Abstract
:1. Introduction
2. The Water–Energy–Food Nexus in the Context of Irrigated Agriculture and Sustainable Development
3. Methods
4. Results and Discussion
4.1. Bibliometric Analysis of WEF Nexus Publications Related to Irrigated Agriculture
4.2. Content Analysis of WEF Nexus Publications Related to Irrigated Agriculture from Water, Energy and Food Perspectives
4.2.1. Water-Related Activities within the WEF Nexus Related to Irrigated Agriculture
4.2.2. Energy-Related Activities within the WEF Nexus Related to Irrigated Agriculture
4.2.3. Food-Related Activities within the WEF Nexus Related to Irrigated Agriculture
4.3. Relevance of the WEF Nexus Publications to Key Challenges of Irrigated Agriculture: Integrated and Sustainable Development Perspective
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Avellan, T.; Ardakanian, R.; Perret, S.R.; Ragab, R.; Vlotman, W.; Zainal, H.; Im, S.; Gany, H.A. Considering resources beyond water: Irrigation and drainage management in the context of the water–energy–food nexus. Irrig. Drain. 2018, 67, 12–21. [Google Scholar] [CrossRef]
- Stamou, A.-T.; Rutschmann, P. Pareto optimization of water resources using the nexus approach. Water Resour. Manag. 2018, 32, 5053–5065. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.Y.; Liu, S.Y.; Liu, Q.Y.; Feng, B.P.; Tanzer, J. Evaluating agricultural sustainability based on the water-energy-food nexus in the chenmengquan irrigation district of China. Sustainability 2019, 11, 5350. [Google Scholar] [CrossRef] [Green Version]
- Murzakulova, A.; Schmidt-Vogt, D.; Balla, D.; Darr, D.; Hamidov, A.; Kasymov, U.; Mendelevitch, R.; Orazgaliyev, S. Water for agriculture and other economic sectors. In The Aral Sea Basin: Water for Sustainable Development in Central Asia; Routledge: Abingdon, UK, 2020; pp. 86–99. [Google Scholar]
- Hoff, H. Understanding the Nexus. In Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus, Bonn, Germany, 16–18 November 2011; Stockholm Environment Institute: Stockholm, Sweden, 2011. [Google Scholar]
- Schull, V.Z.; Daher, B.; Gitau, M.W.; Mehan, S.; Flanagan, D.C. Analyzing FEW nexus modeling tools for water resources decision-making and management applications. Food Bioprod. Process. 2020, 119, 108–124. [Google Scholar] [CrossRef]
- Salmoral, G.; Schaap, N.C.; Walschebauer, J.; Alhajaj, A. Water diplomacy and nexus governance in a transboundary context: In the search for complementarities. Sci. Total Environ. 2019, 690, 85–96. [Google Scholar] [CrossRef]
- De Strasser, L.; Lipponen, A.; Howells, M.; Stec, S.; Brethaut, C. A methodology to assess the water energy food ecosystems nexus in Transboundary River Basins. Water 2016, 8, 59. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Rasanen, T.A.; Varis, O. The water-energy-food nexus and the transboundary context: Insights from Large Asian Rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef] [Green Version]
- Dombrowsky, I.; Hensengerth, O. Governing the water-energy-food nexus related to hydropower on shared rivers—The role of regional organizations. Front. Environ. Sci. 2018, 6, 153. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.F.; Yang, Y.C.E.; Xie, H.; Ringler, C. A coupled modeling framework for sustainable watershed management in transboundary river basins. Hydrol. Earth Syst. Sci. 2017, 21, 6275–6288. [Google Scholar] [CrossRef] [Green Version]
- Venghaus, S.; Hake, J.F. Nexus thinking in current EU policies - The interdependencies among food, energy and water resources. Environ. Sci. Policy 2018, 90, 183–192. [Google Scholar] [CrossRef]
- Bhaduri, A.; Ringler, C.; Dombrowski, I.; Mohtar, R.; Scheumann, W. Sustainability in the water-energy-food nexus. Water Int. 2015, 40, 723–732. [Google Scholar] [CrossRef]
- Wichelns, D. The water-energy-food nexus: Is the increasing attention warranted, from either a research or policy perspective? Environ. Sci. Policy 2017, 69, 113–123. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Bellocchi, G.; Bojar, W.; Dalgaard, T.; Ghaley, B.B.; Hoffmann, C.; Holman, I.; Holzkämper, A.; Krzeminska, D.; et al. Impacts of climate change adaptation options on soil functions: A review of European case-studies. Land Deg. Dev. 2018, 29, 2378–2389. [Google Scholar] [CrossRef]
- Lant, C.; Baggio, J.; Konar, M.; Mejia, A.; Ruddell, B.; Rushforth, R.; Sabo, J.L.; Troy, T.J. The US food–energy–water system: A blueprint to fill the mesoscale gap for science and decision-making. Ambio 2019, 48, 251–263. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Sauer, T.J.; Cruse, R.M. Soil: The forgotten piece of the water, food, energy nexus. Adv. Agron. 2017, 143, 1–46. [Google Scholar] [CrossRef]
- Okpara, U.T.; Fleskens, L.; Stringer, L.C.; Hessel, R.; Bachmann, F.; Daliakopoulos, I.; Berglund, K.; Velazquez, F.J.B.; Dal Ferro, N.; Keizer, J. Helping stakeholders select and apply appraisal tools to mitigate soil threats: Researchers’ experiences from across Europe. J. Environ. Manag. 2020, 257, 110005. [Google Scholar] [CrossRef] [PubMed]
- Endo, A.; Tsurita, I.; Burnett, K.; Orencio, P.M. A review of the current state of research on the water, energy, and food nexus. J. Hydrol. Reg. Stud. 2017, 11, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Albrecht, T.R.; Crootof, A.; Scott, C.A. The Water-Energy-Food Nexus: A systematic review of methods for nexus assessment. Environ. Res. Lett. 2018, 13, 043002. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, L.; Chang, Y.; Xu, M.; Hao, Y.; Liang, S.; Liu, G.; Yang, Z.; Wang, C. Food-energy-water (FEW) nexus for urban sustainability: A comprehensive review. Resour. Conserv. Recycl. 2019, 142, 215–224. [Google Scholar] [CrossRef]
- Roidt, M.; Avellan, T. Learning from integrated management approaches to implement the Nexus. J. Environ. Manag. 2019, 237, 609–616. [Google Scholar] [CrossRef]
- Boas, I.; Biermann, F.; Kanie, N. Cross-sectoral strategies in global sustainability governance: Towards a nexus approach. Int. Environ. Agreem. 2016, 16, 449–464. [Google Scholar] [CrossRef] [Green Version]
- Rasul, G. Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environ. Dev. 2016, 18, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Perry, C. Efficient irrigation; Inefficient communication; flawed recommendations. Irrig. Drain. 2007, 56, 367–378. [Google Scholar] [CrossRef]
- Hamidov, A.; Thiel, A.; Zikos, D. Institutional design in transformation: A comparative study of local irrigation governance in Uzbekistan. Environ. Sci. Policy 2015, 53, 175–191. [Google Scholar] [CrossRef]
- Zikos, D.; Sorman, A.H.; Lau, M. Beyond water security: Asecuritisation and identity in Cyprus. Int. Environ. Agreem. 2015, 15, 309–326. [Google Scholar] [CrossRef]
- Brelle, F. How do irrigation and drainage interventions secure food production and livelihood for rural communities? Irrig. Drain. 2016, 65, 210–213. [Google Scholar] [CrossRef]
- Habteyes, B.G.; Ward, F.A. Economics of irrigation water conservation: Dynamic optimization for consumption and investment. J. Environ. Manag. 2020, 258, 110040. [Google Scholar] [CrossRef]
- Hamidov, A.; Helming, K.; Balla, D. Impact of agricultural land use in Central Asia: A review. Agron. Sustain. Dev. 2016, 36, 6. [Google Scholar] [CrossRef] [Green Version]
- Hamidov, A.; Beltrao, J.; Neves, A.; Khaydarova, V.; Khamidov, M. Apocynum lancifolium and Chenopodium album—Potential species to remediate saline soils. WSEAS Trans. Environ. Dev. 2007, 3, 123–128. [Google Scholar]
- Louati, D.; Majdoub, R.; Rigane, H.; Abida, H. Effects of irrigating with saline water on soil salinization (Eastern Tunisia). Arab J. Sci. Eng. 2018, 43, 3793–3805. [Google Scholar] [CrossRef]
- Agarwal, A.; delos Angeles, M.S.; Bhatia, R.; Chéret, I.; Davila-Poblete, S.; Falkenmark, M.; Villarreal, F.G.; Jønch-Clausen, T.; Kadi, M.A.; Kindler, J. Integrated Water Resources Management; Global Water Partnership: Stockholm, Sweden, 2000; Volume 4, p. 71. ISBN 91-630-9229-8. [Google Scholar]
- Cai, X.; Wallington, K.; Shafiee-Jood, M.; Marston, L. Understanding and managing the food-energy-water nexus–opportunities for water resources research. Adv. Water Resour. 2018, 111, 259–273. [Google Scholar] [CrossRef]
- Zeng, R.J.; Cai, X.M.; Ringler, C.; Zhu, T.J. Hydropower versus irrigation-an analysis of global patterns. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Leach, M.; Rockström, J.; Raskin, P.; Scoones, I.; Stirling, A.C.; Smith, A.; Thompson, J.; Millstone, E.; Ely, A.; Arond, E. Transforming innovation for sustainability. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef] [Green Version]
- Olawuyi, D. Sustainable development and the water-energy-food nexus: Legal challenges and emerging solutions. Environ. Sci. Policy 2020, 103, 1–9. [Google Scholar] [CrossRef]
- Giupponi, C.; Gain, A.K. Integrated spatial assessment of the water, energy and food dimensions of the sustainable development goals. Reg. Environ. Chang. 2017, 17, 1881–1893. [Google Scholar] [CrossRef]
- Gao, W.; Guo, H.-C. Nitrogen research at watershed scale: A bibliometric analysis during 1959–2011. Scientometrics 2014, 99, 737–753. [Google Scholar] [CrossRef]
- Keairns, D.L.; Darton, R.C.; Irabien, A. The energy-water-food nexus. In Annual Review of Chemical and Biomolecular Engineering; Prausnitz, J.M., Ed.; Annual Reviews: Palo Alto, CA, USA, 2016; Volume 7, pp. 239–262. [Google Scholar]
- Bekchanov, M.; Lamers, J.P.A. The effect of energy constraints on water allocation decisions: The elaboration and application of a system-wide economic-water-energy model (SEWEM). Water 2016, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Leck, H.; Conway, D.; Bradshaw, M.; Rees, J. Tracing the water–energy–food nexus: Description, theory and practice. Geogr. Compass 2015, 9, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Ermolieva, T.; Balkovic, J.; Mosnier, A.; Kraxner, F.; Liu, J.G. Recursive cross-entropy downscaling model for spatially explicit future land uses: A case study of the Heihe River Basin. Phys. Chem. Earth 2015, 89–90, 56–64. [Google Scholar] [CrossRef]
- Ermolieva, T.; Havlik, P.; Ermoliev, Y.; Mosnier, A.; Obersteiner, M.; Leclere, D.; Khabarov, N.; Valin, H.; Reuter, W. Integrated management of land use systems under systemic risks and security _targets: A stochastic global biosphere management model. J. Agric. Econ. 2016, 67, 584–601. [Google Scholar] [CrossRef] [Green Version]
- Holt, N.; Shukla, S.; Hochmuth, G.; Munoz-Carpena, R.; Ozores-Hampton, M. Transforming the food-water-energy-land-economic nexus of plasticulture production through compact bed geometries. Adv. Water Resour. 2017, 110, 515–527. [Google Scholar] [CrossRef]
- Karabulut, A.; Egoh, B.N.; Lanzanova, D.; Grizzetti, B.; Bidoglio, G.; Pagliero, L.; Bouraoui, F.; Aloe, A.; Reynaud, A.; Maes, J.; et al. Mapping water provisioning services to support the ecosystem-water-food-energy nexus in the Danube river basin. Ecosyst. Serv. 2016, 17, 278–292. [Google Scholar] [CrossRef]
- Daher, B.; Lee, S.H.; Kaushik, V.; Blake, J.; Askariyeh, M.H.; Shafiezadeh, H.; Zamaripa, S.; Mohtar, R.H. Towards bridging the water gap in Texas: A water-energy-food nexus approach. Sci. Total Environ. 2019, 647, 449–463. [Google Scholar] [CrossRef] [PubMed]
- Mdee, A. Disaggregating orders of water scarcity—The politics of nexus in the Wami-Ruvu River Basin, Tanzania. Water Altern. 2017, 10, 100–115. [Google Scholar]
- Mukherji, A.; Das, A. The political economy of metering agricultural tube wells in West Bengal, India. Water Int. 2014, 39, 671–685. [Google Scholar] [CrossRef]
- Talozi, S.; Al Sakaji, Y.; Altz-Stamm, A. Towards a water-energy-food nexus policy: Realizing the blue and green virtual water of agriculture in Jordan. Int. J. Water Resour. Dev. 2015, 31, 461–482. [Google Scholar] [CrossRef]
- White, D.D.; Jones, J.L.; Maciejewski, R.; Aggarwal, R.; Mascaro, G. Stakeholder analysis for the food-energy-water Nexus in Phoenix, Arizona: Implications for nexus governance. Sustainability 2017, 9, 2204. [Google Scholar] [CrossRef] [Green Version]
- Hannibal, B.; Portney, K. Correlates of food-energy-water nexus awareness among the American public. Soc. Sci. Q. 2019, 100, 762–778. [Google Scholar] [CrossRef]
- Mortensen, J.G.; Gonzalez-Pinzon, R.; Dahm, C.N.; Wang, J.J.; Zeglin, L.H.; Van Horn, D.J. Advancing the food-energy-water nexus: Closing nutrient loops in arid river corridors. Environ. Sci. Technol. 2016, 50, 8485–8496. [Google Scholar] [CrossRef] [Green Version]
- Obade, V.D.; Lal, R. Towards a standard technique for soil quality assessment. Geoderma 2016, 265, 96–102. [Google Scholar] [CrossRef]
- Tran, V.H.; Phuntsho, S.; Park, H.; Han, D.S.; Shon, H.K. Sulfur-containing air pollutants as draw solution for fertilizer drawn forward osmosis desalination process for irrigation use. Desalination 2017, 424, 1–9. [Google Scholar] [CrossRef]
- FAO. Area Equipped for Irrigation and Percentage of Cultivated Land; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016. [Google Scholar]
- Olsson, A.; Campana, P.E.; Lind, M.; Yan, J.Y. PV water pumping for carbon sequestration in dry land agriculture. Energy Convers. Manag. 2015, 102, 169–179. [Google Scholar] [CrossRef]
- D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S. Global virtual water trade and the hydrological cycle: Patterns, drivers, and socio-environmental impacts. Environ. Res. Lett. 2019, 14, 053001. [Google Scholar] [CrossRef]
- Chini, C.M.; Konar, M.; Stillwell, A.S. Direct and indirect urban water footprints of the United States. Water Resour. Res. 2017, 53, 316–327. [Google Scholar] [CrossRef]
- Siddiqi, A.; Wescoat, J.L. Energy use in large-scale irrigated agriculture in the Punjab province of Pakistan. Water Int. 2013, 38, 571–586. [Google Scholar] [CrossRef]
- Yapiyev, V.; Sagintayev, Z.; Inglezakis, V.J.; Samarkhanov, K.; Verhoef, A. Essentials of endorheic basins and lakes: A review in the context of current and future water resource management and mitigation activities in Central Asia. Water 2017, 9, 798. [Google Scholar] [CrossRef] [Green Version]
- Jalilov, S.M.; Amer, S.A.; Ward, F.A. Managing the water-energy-food nexus: Opportunities in Central Asia. J. Hydrol. 2018, 557, 407–425. [Google Scholar] [CrossRef]
- Jobbins, G.; Kalpakian, J.; Chriyaa, A.; Legrouri, A.; El Mzouri, E. To what end? Drip irrigation and the water-energy-food nexus in Morocco. Int. J. Water Resour. Dev. 2015, 31, 393–406. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.; Wang, Y.; Garrick, D. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.; Techen, A.-K.; Robinson, J.S.; Helming, K. Rebound effects in agricultural land and soil management: Review and analytical framework. J. Clean. Prod. 2019, 227, 154–1067. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Ruddell, B.L.; Reed, P.M.; Hook, R.I.; Zheng, C.; Tidwell, V.C.; Siebert, S. The food-energy-water nexus: Transforming science for society. Water Resour. Res. 2017, 53, 3550–3556. [Google Scholar] [CrossRef]
- Daccache, A.; Ciurana, J.S.; Diaz, J.A.R.; Knox, J.W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett. 2014, 9, 124014. [Google Scholar] [CrossRef]
- Doukkali, M.R.; Lejars, C. Energy cost of irrigation policy in Morocco: A social accounting matrix assessment. Int. J. Water Resour. Dev. 2015, 31, 422–435. [Google Scholar] [CrossRef]
- Closas, A.; Rap, E. Solar-based groundwater pumping for irrigation: Sustainability, policies, and limitations. Energy Policy 2017, 104, 33–37. [Google Scholar] [CrossRef]
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef]
- Mohareb, E.; Heller, M.; Novak, P.; Goldstein, B.; Fonoll, X.; Raskin, L. Considerations for reducing food system energy demand while scaling up urban agriculture. Environ. Res. Lett. 2017, 12, 125004. [Google Scholar] [CrossRef]
- Walsh, M.J.; Van Doren, L.G.; Sills, D.L.; Archibald, I.; Beal, C.M.; Lei, X.G.; Huntley, M.E.; Johnson, Z.; Greene, C.H. Algal food and fuel coproduction can mitigate greenhouse gas emissions while improving land and water-use efficiency. Environ. Res. Lett. 2016, 11, 114006. [Google Scholar] [CrossRef]
- De Fraiture, C.; Fayrap, A.; Unver, O.; Ragab, R. Integrated water management approaches for sustainable food production. Irrig. Drain. 2014, 63, 221–231. [Google Scholar] [CrossRef]
- El-Gafy, I.; Grigg, N.; Waskom, R. Water-food-energy: Nexus and non-nexus approaches for optimal cropping pattern. Water Resour. Manag. 2017, 31, 4971–4980. [Google Scholar] [CrossRef]
- Berardy, A.; Chester, M.V. Climate change vulnerability in the food, energy, and water nexus: Concerns for agricultural production in Arizona and its urban export supply. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef]
- Damerau, K.; Patt, A.G.; van Vliet, O.P.R. Water saving potentials and possible trade-offs for future food and energy supply. Glob. Environ. Chang. 2016, 39, 15–25. [Google Scholar] [CrossRef] [Green Version]
- Dhaubanjar, S.; Davidsen, C.; Bauer-Gottwein, P. Multi-objective optimization for analysis of changing trade-offs in the nepalese water-energy-food nexus with hydropower development. Water 2017, 9, 162. [Google Scholar] [CrossRef] [Green Version]
- Djumaboev, K.; Yuldashev, T.; Holmatov, B.; Gafurov, Z. Assessing water use, energy use and carbon emissions in lift-irrigated areas: A case study from Karshi steppe in Uzbekistan. Irrig. Drain. 2019, 68, 409–419. [Google Scholar] [CrossRef]
- Guillaume, J.H.A.; Kummu, M.; Eisner, S.; Varis, O. Transferable principles for managing the nexus: Lessons from historical global water modelling of Central Asia. Water 2015, 7, 4200–4231. [Google Scholar] [CrossRef] [Green Version]
- Jalilov, S.M.; Keskinen, M.; Varis, O.; Amer, S.; Ward, F.A. Managing the water-energy-food nexus: Gains and losses from new water development in Amu Darya River Basin. J. Hydrol. 2016, 539, 648–661. [Google Scholar] [CrossRef]
- Jiang, Y. China’s water security: Current status, emerging challenges and future prospects. Environ. Sci. Policy 2015, 54, 106–125. [Google Scholar] [CrossRef]
- Paim, M.A.; Salas, P.; Lindner, S.; Pollitt, H.; Mercure, J.F.; Edwards, N.R.; Vinuales, J.E. Mainstreaming the water-energy-food nexus through nationally determined contributions (NDCs): The case of Brazil. Clim. Policy 2020, 20, 163–178. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Shukla, S.; Graham, W.D.; Wani, S.P.; Jones, J.W.; Heaney, J. Current and future groundwater withdrawals: Effects, management and energy policy options for a semi-arid Indian watershed. Adv. Water Resour. 2017, 110, 459–475. [Google Scholar] [CrossRef]
- Zamft, B.M.; Conrado, R.J. Engineering plants to reflect light: Strategies for engineering water-efficient plants to adapt to a changing climate. Plant. Biotechnol. J. 2015, 13, 867–874. [Google Scholar] [CrossRef]
- Barik, B.; Ghosh, S.; Sahana, A.S.; Pathak, A.; Sekhar, M. Water-food-energy nexus with changing agricultural scenarios in India during recent decades. Hydrol. Earth Syst. Sci. 2017, 21, 3041–3060. [Google Scholar] [CrossRef] [Green Version]
- Pradeleix, L.; Roux, P.; Bouarfa, S.; Jaouani, B.; Lili-Chabaane, Z.; Bellon-Maurel, V. Environmental impacts of contrasted groundwater pumping systems assessed by life cycle assessment methodology: Contribution to the water-energy nexus study. Irrig. Drain. 2015, 64, 124–138. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Shukla, S.; Wani, S.P.; Graham, W.D.; Jones, J.W. Future irrigation expansion outweigh groundwater recharge gains from climate change in semi-arid India. Sci. Total Environ. 2018, 635, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Smidt, S.J.; Haacker, E.M.K.; Kendall, A.D.; Deines, J.M.; Pei, L.S.; Cotterman, K.A.; Li, H.Y.; Liu, X.; Basso, B.; Hyndman, D.W. Complex water management in modern agriculture: Trends in the water-energy-food nexus over the High Plains Aquifer. Sci. Total Environ. 2016, 566, 988–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.W.D.; Hejazi, M.; Calvin, K.; Kyle, P.; Kim, S. A pathway of global food supply adaptation in a world with increasingly constrained groundwater. Sci. Total Environ. 2019, 673, 165–176. [Google Scholar] [CrossRef] [Green Version]
- DeLonge, M.; Basche, A. Leveraging agroecology for solutions in food, energy, and water. Elementa-Sci. Anthrop. 2017, 5. [Google Scholar] [CrossRef]
- Lal, R. The soil-peace nexus: Our common future. Soil Sci. Plant. Nutr. 2015, 61, 566–578. [Google Scholar] [CrossRef] [Green Version]
- Saladini, F.; Betti, G.; Ferragina, E.; Bouraoui, F.; Cupertino, S.; Canitano, G.; Gigliotti, M.; Autino, A.; Pulselli, F.M.; Riccaboni, A.; et al. Linking the water-energy-food nexus and sustainable development indicators for the Mediterranean region. Ecol. Indic. 2018, 91, 689–697. [Google Scholar] [CrossRef]
- Van Ginkel, S.W.; Igou, T.; Chen, Y.S. Energy, water and nutrient impacts of California-grown vegetables compared to controlled environmental agriculture systems in Atlanta, GA. Resour. Conserv. Recycl. 2017, 122, 319–325. [Google Scholar] [CrossRef]
- Wong, K.V. Energy-water-food nexus and recommendations for security. J. Energy Resour. ASME 2015, 137. [Google Scholar] [CrossRef]
- Aguilera, E.; Vila-Traver, J.; Deemer, B.R.; Infante-Amate, J.; Guzman, G.I.; de Molina, M.G. Methane emissions from artificial waterbodies dominate the carbon footprint of irrigation: A study of transitions in the food-energy-water-climate nexus (Spain, 1900–2014). Environ. Sci. Technol. 2019, 53, 5091–5101. [Google Scholar] [CrossRef]
- Rasul, G. Food, water, and energy security in South Asia: A nexus perspective from the Hindu Kush Himalayan region. Environ. Sci. Policy 2014, 39, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Macknick, J.; Lobell, D.; Field, C.; Ganesan, K.; Jain, R.; Elchinger, M.; Stoltenberg, B. Colocation opportunities for large solar infrastructures and agriculture in drylands. Appl. Energy 2016, 165, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Lyu, T.; Mortimer, R. Comment: Closing phosphorus cycle from natural waters: Re-capturing phosphorus through an integrated water-energy-food strategy. J. Environ. Sci. 2018, 65, 375–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, L.; D’Odorico, P. The water-energy-food nexus of unconventional oil and gas extraction in the Vaca Muerta Play, Argentina. J. Clean. Prod. 2019, 207, 743–750. [Google Scholar] [CrossRef]
- Wolfe, M.L.; Richard, T.L. 21st century engineering for on-farm food-energy-water systems. Curr. Opin. Chem. Eng. 2017, 18, 69–76. [Google Scholar] [CrossRef]
- De Vito, R.; Pagano, A.; Portoghese, I.; Giordano, R.; Vurro, M.; Fratino, U. Integrated Approach for supporting sustainable water resources management of irrigation based on the WEFN framework. Water Resour. Manag. 2019, 33, 1281–1295. [Google Scholar] [CrossRef]
- Gusha, M.; Dzikiti, S.; van Der Laan, M.; Steyn, M.; Manamathela, S.; Pienaar, H. Field quantification of the water footprint of an apple orchard, and extrapolation to watershed scale within a winter rainfall Mediterranean climate zone. Agr. For. Meteorol. 2019, 271, 135–147. [Google Scholar] [CrossRef]
- Ramaswami, A.; Boyer, D.; Nagpure, A.S.; Fang, A.; Bogra, S.; Bakshi, B.; Cohen, E.; Rao-Ghorpade, A. An urban systems framework to assess the trans-boundary food-energy-water nexus: Implementation in Delhi, India. Environ. Res. Lett. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Vanham, D. Does the water footprint concept provide relevant information to address the water-food-energy-ecosystem nexus? Ecosyst. Serv. 2016, 17, 298–307. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, Z.H.; Fan, W.G.; Ren, J.H.; Liu, R.R.; Dong, X.B. Structure dynamics and risk assessment of water-energy-food nexus: A water footprint approach. Sustainability 2019, 11, 1187. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, K.; Yu, Y.J.; Yang, B.B. Mapping of water footprint research: A bibliometric analysis during 20062–015. J. Clean. Prod. 2017, 149, 70–79. [Google Scholar] [CrossRef]
- Avellan, C.T.; Ardakanian, R.; Gremillion, P. The role of constructed wetlands for biomass production within the water-soil-waste nexus. Water Sci. Technol. 2017, 75, 2237–2245. [Google Scholar] [CrossRef]
- Chen, H.G.; Zhang, Y.H.P. New biorefineries and sustainable agriculture: Increased food, biofuels, and ecosystem security. Renew. Sustain. Energy Rev. 2015, 47, 117–132. [Google Scholar] [CrossRef]
- Ghani, W.; Salleh, M.A.M.; Adam, S.N.; Shafri, H.Z.M.; Shaharum, S.N.; Lim, K.L.; Rubinsin, N.J.; Lam, H.L.; Hasan, A.; Samsatli, S.; et al. Sustainable bio-economy that delivers the environment-food-energy-water nexus objectives: The current status in Malaysia. Food Bioprod. Process. 2019, 118, 167–186. [Google Scholar] [CrossRef]
- Payet-Burin, R.; Kromann, M.; Pereira-Cardenal, S.; Strzepek, K.M.; Bauer-Gottwein, P. WHAT-IF: An open-source decision support tool for water infrastructure investment planning within the water-energy-food-climate nexus. Hydrol. Earth Syst. Sci. 2019, 23, 4129–4152. [Google Scholar] [CrossRef] [Green Version]
- Bieber, N.; Ker, J.H.; Wang, X.N.; Triantafyllidis, C.; van Dam, K.H.; Koppelaar, R.; Shah, N. Sustainable planning of the energy-water-food nexus using decision making tools. Energy Policy 2018, 113, 584–607. [Google Scholar] [CrossRef]
- Kilkis, S.; Kilkis, B. Integrated circular economy and education model to address aspects of an energy-water-food nexus in a dairy facility and local contexts. J. Clean. Prod. 2017, 167, 1084–1098. [Google Scholar] [CrossRef]
- Salah, A.H.; Hassan, G.E.; Fath, H.; Elhelw, M.; Elsherbiny, S. Analytical investigation of different operational scenarios of a novel greenhouse combined with solar stills. Appl. Therm. Eng. 2017, 122, 297–310. [Google Scholar] [CrossRef]
- Schwanitz, V.J.; Wierling, A.; Shah, P. Assessing the impact of renewable energy on regional sustainability: A comparative study of Sogn og Fjordane (Norway) and Okinawa (Japan). Sustainability 2017, 9, 1969. [Google Scholar] [CrossRef] [Green Version]
- Serrano-Tovar, T.; Suarez, B.P.; Musicki, A.; Bencomo, J.A.D.; Cabello, V.; Giampietro, M. Structuring an integrated water-energy-food nexus assessment of a local wind energy desalination system for irrigation. Sci. Total Environ. 2019, 689, 945–957. [Google Scholar] [CrossRef]
- Taseli, B.K.; Kilkis, B. Ecological sanitation, organic animal farm, and cogeneration: Closing the loop in achieving sustainable development-A concept study with on-site biogas fueled trigeneration retrofit in a 900-bed university hospital. Energy Build. 2016, 129, 102–119. [Google Scholar] [CrossRef]
- Wong, K.V.; Pecora, C. Recommendations for energy-water-food nexus problems. J. Energy Resour. ASME 2015, 137. [Google Scholar] [CrossRef]
- AbdelHady, R.S.; Fahmy, H.S.; Pacini, N. Valuing of Wadi El-Rayan ecosystem through water-food-energy nexus approach. Ecohydrol. Hydrobiol. 2017, 17, 247–253. [Google Scholar] [CrossRef]
- Perrone, D.; Hornberger, G. Frontiers of the food-energy-water trilemma: Sri Lanka as a microcosm of tradeoffs. Environ. Res. Lett. 2016, 11. [Google Scholar] [CrossRef]
- Villamayor-Tomas, S.; Grundmann, P.; Epstein, G.; Evans, T.; Kimmich, C. The water-energy-food security nexus through the lenses of the value chain and the institutional analysis and development frameworks. Water Altern. 2015, 8, 735–755. [Google Scholar]
- Zanon, B.D.; Roeffen, B.; Czapiewska, K.M.; de Graaf-Van Dinther, R.E.; Mooij, P.R. Potential of floating production for delta and coastal cities. J. Clean. Prod. 2017, 151, 10–20. [Google Scholar] [CrossRef]
- Li, M.; Fu, Q.; Singh, V.P.; Ji, Y.; Liu, D.; Zhang, C.L.; Li, T.X. An optimal modelling approach for managing agricultural water-energy-food nexus under uncertainty. Sci. Total Environ. 2019, 651, 1416–1434. [Google Scholar] [CrossRef]
- Foran, T. Node and regime: Interdisciplinary analysis of water-energy-food nexus in the Mekong Region. Water Altern. 2015, 8, 655–674. [Google Scholar]
- Intralawan, A.; Wood, D.; Frankel, R.; Costanza, R.; Kubiszewski, I. Tradeoff analysis between electricity generation and ecosystem services in the Lower Mekong Basin. Ecosyst. Serv. 2018, 30, 27–35. [Google Scholar] [CrossRef]
- Allam, M.M.; Eltahir, E.A.B. Water-energy-food nexus sustainability in the Upper Blue Nile (UBN) Basin. Front. Environ. Sci. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Amjath-Babu, T.S.; Sharma, B.; Brouwer, R.; Rasul, G.; Wahid, S.M.; Neupane, N.; Bhattarai, U.; Sieber, S. Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin. Appl. Energy 2019, 239, 494–503. [Google Scholar] [CrossRef]
- Hatamkhani, A.; Moridi, A. Multi-objective optimization of hydropower and agricultural Development at River Basin Scale. Water Resour. Manag. 2019. [Google Scholar] [CrossRef]
- Jalilov, S.M.; Amer, S.; Ward, F. Water, food, and energy security: An elusive search for balance in Central Asia. Water Resour. Manag. 2013, 27, 3959–3979. [Google Scholar] [CrossRef]
- Uen, T.S.; Chang, F.J.; Zhou, Y.L.; Tsai, W.P. Exploring synergistic benefits of water-food-energy nexus through multi-objective reservoir optimization schemes. Sci. Total Environ. 2018, 633, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Schlitz, N.; Schumacher, K.P. Globalization and the water-energy-food nexus—Using the global production networks approach to analyze society-environment relations. Environ. Sci. Policy 2018, 90, 201–212. [Google Scholar] [CrossRef]
- Moioli, E.; Salvati, F.; Chiesa, M.; Siecha, R.T.; Manenti, F.; Laio, F.; Rulli, M.C. Analysis of the current world biofuel production under a water-food-energy nexus perspective. Adv. Water Resour. 2018, 121, 22–31. [Google Scholar] [CrossRef]
- De Laurentiis, V.; Hunt, D.V.L.; Rogers, C.D.F. Overcoming food security challenges within an energy/water/food nexus (EWFN) approach. Sustainability 2016, 8, 95. [Google Scholar] [CrossRef] [Green Version]
- Hurford, A.P.; Harou, J.J. Balancing ecosystem services with energy and food security—Assessing trade-offs from reservoir operation and irrigation investments in Kenya’s Tana Basin. Hydrol. Earth Syst. Sci. 2014, 18, 3259–3277. [Google Scholar] [CrossRef] [Green Version]
- Kattelus, M.; Rahaman, M.M.; Varis, O. Myanmar under reform: Emerging pressures on water, energy and food security. Nat. Resour. Forum 2014, 38, 85–98. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132. [Google Scholar] [CrossRef]
- Lamalice, A.; Haillot, D.; Lamontagne, M.A.; Herrmann, T.M.; Gibout, S.; Blangy, S.; Martin, J.L.; Coxam, V.; Arsenault, J.; Munro, L.; et al. Building food security in the Canadian Arctic through the development of sustainable community greenhouses and gardening. Ecoscience 2018, 25, 325–341. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Nkonya, E.; von Braun, J. Economics of sustainable land management. Curr. Opin. Environ. Sustain. 2015, 15, 9–19. [Google Scholar] [CrossRef]
- Rasul, G.; Sharma, B. The nexus approach to water-energy-food security: An option for adaptation to climate change. Clim. Policy 2016, 16, 682–702. [Google Scholar] [CrossRef] [Green Version]
- Wallington, K.; Cai, X.M. The food-energy-water nexus: A framework to address sustainable development in the tropics. Trop. Conserv. Sci. 2017, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.D.; Vesselinov, V.V. Integrated modeling approach for optimal management of water, energy and food security nexus. Adv. Water Resour. 2017, 101, 1–10. [Google Scholar] [CrossRef]
- Bremer, L.L.; Falinski, K.; Ching, C.; Wada, C.A.; Burnett, K.M.; Kukea-Shultz, K.; Reppun, N.; Chun, G.; Oleson, K.L.L.; Ticktin, T. Biocultural restoration of traditional agriculture: Cultural, environmental, and economic outcomes of Lo’’i Kalo Restoration in He’’eia, O’’ahu. Sustainability 2018, 10, 4502. [Google Scholar] [CrossRef] [Green Version]
- King, C.; Jaafar, H. Rapid assessment of the water-energy-food-climate nexus in six selected basins of North Africa and West Asia undergoing transitions and scarcity threats. Int. J. Water Resour. Dev. 2015, 31, 343–359. [Google Scholar] [CrossRef]
- Rosa, L.; Rulli, M.C.; Davis, K.F.; Chiarelli, D.D.; Passera, C.; D’Odorico, P. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Sanjuan-Delmas, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Munoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental assessment of an integrated rooftop greenhouse for food production in cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.M.; Nguyen, T.; Westerhoff, P. Food-energy-water analysis at spatial scales for districts in the Yangtze River Basin (China). Environ. Eng. Sci. 2019, 36, 789–797. [Google Scholar] [CrossRef] [Green Version]
- Abumhadi, N.; Todorovska, E.; Assenov, B.; Tsonev, S.; Vulcheva, D.; Vulchev, D.; Atanasova, L.; Savova, S.; Atanassov, A. Agricultural research in 21st century: Challenges facing the food security under the impacts of climate change. Bulg. J. Agric. Sci. 2012, 18, 801–818. [Google Scholar]
- Campana, P.E.; Zhang, J.; Yao, T.; Andersson, S.; Landelius, T.; Melton, F.; Yan, J. Managing agricultural drought in Sweden using a novel spatially-explicit model from the perspective of water-food-energy nexus. J. Clean. Prod. 2018, 197, 1382–1393. [Google Scholar] [CrossRef]
- Pellegrini, P.; Fernandez, R.J. Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2335–2340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Odorico, P.; Davis, K.F.; Rosa, L.; Carr, J.A.; Chiarelli, D.; Dell’Angelo, J.; Gephart, J.; MacDonald, G.K.; Seekell, D.A.; Suweis, S.; et al. The global food-energy-water nexus. Rev. Geophys. 2018, 56, 456–531. [Google Scholar] [CrossRef]
- Vora, N.; Shah, A.; Bilec, M.M.; Khanna, V. Food-energy-water nexus: Quantifying embodied energy and GHG emissions from irrigation through virtual water transfers in food trade. ACS Sustain. Chem. Eng. 2017, 5, 2119–2128. [Google Scholar] [CrossRef]
- Echchelh, A.; Hess, T.; Sakrabani, R. Reusing oil and gas produced water for irrigation of food crops in drylands. Agric. Water Manag. 2018, 206, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Artiola, J.; Walworth, J.; Musil, S.; Crimmins, M. Soil and land pollution. In Environmental and Pollution Science; Elsevier: Amsterdam, The Netherlands, 2019; pp. 219–235. [Google Scholar] [CrossRef]
WEF Nexus | Themes | Geographic Coverage 1 | References |
---|---|---|---|
Water | Water availability for agriculture | Central Asia, eastern Asia, Europe, southern America, southern Asia, Sub-Saharan Africa, World | Closas and Rap [69], Damerau et al. [76], Dhaubanjar et al. [77], Djumaboev et al. [78], Guillaume et al. [79], Jalilov et al. [80], Jiang [81], Karabulut et al. [46], Khan et al. [11], Olsson et al. [57], Paim et al. [82], Sishodia et al. [83], Zamft and Conrado [84], Zeng et al. [35] |
Groundwater management | Central Asia, Europe, northern Africa, northern America, southern Asia, World | Barik et al. [85], Bekchanov and Lamers [41], Closas and Rap [69], Mukherji and Das [49], Pradeleix et al. [86], Sishodia et al. [83], Sishodia et al. [87], Smidt et al. [88], Turner et al. [89], Talozi et al. [50] | |
Floods and droughts | Europe, northern Africa, northern America, World | Berardy and Chester [75], Daccache et al. [67], DeLonge and Basche [90], Holt et al. [45], Lal [91], Saladini et al. [92], Van Ginkel et al. [93], Wong [94], Zeng et al. [35] | |
Water-use efficiency | Europe, northern Africa, southern Asia, World | Aguilera et al. [95], Jobbins et al. [63], Rasul [96], Ravi et al. [97], Walsh et al. [72] | |
Wastewater treatment | Northern America, southern America, southern Asia, World | Holt et al. [45], Miller-Robbie et al. [70], Mohareb et al. [71], Mortensen et al. [53], Pan et al. [98], Rosa and D’Odorico [99], Wolfe and Richard [100] | |
Water footprint | Europe, northern Africa, northern America, southern Asia, Sub-Saharan Africa, World | Chini et al. [59], Daccache et al. [67], de Vito et al. [101], Gusha et al. [102], Ramaswami et al. [103], Vanham [104], Zhang et al. [105], Zhang et al. [106] | |
Water pollution | Eastern Asia, northern America, World | Avellan et al. [107], Chen and Zhang [108], DeLonge and Basche [90], Ghani et al. [109], Jiang [81] | |
Water infrastructure | Central Asia, Sub-Saharan Africa | Bekchanov and Lamers [41], Payet-Burin et al. [110], Yapiyev et al. [61] | |
Water-related diseases | Southern Asia | Rasul [24] | |
Energy | Renewable energy (solar power) infrastructure | Europe, northern Africa, northern America, southern Asia, Sub-Saharan Africa, World | Bieber et al. [111], Closas and Rap [69], Kilkis and Kilkis [112], Ravi et al. [97], Salah et al. [113], Schwanitz et al. [114], Serrano-Tovar et al. [115], Taseli and Kilkis [116], Wong and Pecora [117] |
Energy productivity | Europe, northern Africa, southern Asia | AbdelHady et al. [118], Perrone and Hornberger [119], Villamayor-Tomas et al. [120], Zanon et al. [121] | |
Energy footprint | Eastern Asia, Europe, northern Africa, northern America, southern Asia | Daccache et al. [67], Holt et al. [45], Li et al. [122], Ramaswami et al. [103], Talozi et al. [50] | |
Energy efficiency | Eastern Asia, northern Africa, northern America | Foran [123], Intralawan et al. [124], Jobbins et al. [63], Mohareb et al. [71] | |
Energy for water supplies | Central Asia, southern Asia | Djumaboev et al. [78], Siddiqi and Wescoat [60] | |
Hydropower development | Central Asia, eastern Asia, northern Africa, southern Asia, World | Allam and Eltahir [125], Amjath-Babu et al. [126], Dhaubanjar et al. [77], Hatamkhani and Moridi [127], Intralawan et al. [124], Jalilov et al. [128], Jalilov et al. [80], Rasul [96], Uen et al. [129], Zeng et al. [35] | |
Bioenergy production | Europe, World | Franz et al. [130], Moioli et al. [131], Villamayor-Tomas et al. [120] | |
Subsidized energy | Northern Africa, southern Asia | Doukkali and Lejars [68], Sishodia et al. [87] | |
Food | Maintenance of food security | Eastern Asia, Europe, northern America, southern Asia, Sub-Saharan Africa, World | Barik et al. [85], De Fraiture et al. [73], De Laurentiis et al. [132], Hurford and Harou [133], Kattelus et al. [134], Kopittke et al. [135], Lamalice et al. [136], Mirzabaev et al. [137], Olsson et al. [57], Rasul and Sharma [138], Wallington and Cai [139], Zhang and Vesselinov [140] |
Increase in food production | Eastern Asia, Europe, northern Africa, northern America, World | Bremer et al. [141], King and Jaafar [142], Rosa et al. [143], Sanjuan-Delmas et al. [144], Wang et al. [145] | |
Food supply chains | Northern America, World | Abumhadi et al. [146], Berardy and Chester [75], Damerau et al. [76], Turner et al. [89] | |
Crop patterns | Europe, northern Africa, southern Asia, World | Amjath-Babu et al. [126], Campana et al. [147], El-Gafy et al. [74], Pellegrini and Fernandez [148] | |
Food trade networks | Northern America | D’Odorico et al. [149], Vora et al. [150] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamidov, A.; Helming, K. Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture. Sustainability 2020, 12, 6274. https://doi.org/10.3390/su12156274
Hamidov A, Helming K. Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture. Sustainability. 2020; 12(15):6274. https://doi.org/10.3390/su12156274
Chicago/Turabian StyleHamidov, Ahmad, and Katharina Helming. 2020. "Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture" Sustainability 12, no. 15: 6274. https://doi.org/10.3390/su12156274
APA StyleHamidov, A., & Helming, K. (2020). Sustainability Considerations in Water–Energy–Food Nexus Research in Irrigated Agriculture. Sustainability, 12(15), 6274. https://doi.org/10.3390/su12156274