Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism and Xylanase Production
2.2. Xylanase Activity Assay
2.3. Cellulase Activity Assay
2.4. Enzymatic Saccharification of PBAB
2.5. Raw Material
2.6. Extrusion Pretreatment of BAB
2.7. Glucose and Xylose Determination
2.8. Scanning Electronic Microscopy
2.9. Fermentation of PBAB Hydrolysate
2.10. Ethanol Determination
2.11. Statistical Analysis
3. Results and Discussion
3.1. Xylanase Activity
3.2. BAB Pretreatment and Composition
3.3. Effect of In-House Hemicellulases on the Hydrolysis of PBAB
3.4. Analysis of the BAB Surface
3.5. Fermentation of Hydrolysates from PBAB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saucedo-Luna, J.; Castro-Montoya, A.J.; Martínez-Pacheco, M.M.; Sosa-Aguirre, C.R.; Campos-García, J. Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J. Ind. Microbiol. Biotechnol. 2011, 38, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Rios-González, R.G.; Morales-Martínez, T.K.; Rodríguez-Flores, M.F.; Rodriguez-De la Garza, J.A.; Castillo-Quiroz, D.; Castro-Montoya, A.J.; Martínez, A. Autohydrolysis pretreatment assessment in ethanol production from agave bagasse. Bioresour. Technol. 2017, 242, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Flores-Gómez, C.A.; Escamilla Silva, E.M.; Zhong, C.; Dale, E.D.; da Costa Sousa, L.; Balan, V. Conversion of lignocellulosic agave residues into liquid biofuels using an AFEX-based biorefinery. Biotechnol. Biofuels 2018, 11, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Zavala, M.; Hernández-Arzaba, J.C.; Bideshi, D.K.; Barboza-Corona, J.E. Agave: A natural renewable resource with multiple applications. J. Sci. Food Agric. 2020, 100, 5324–5333. [Google Scholar] [CrossRef] [PubMed]
- Moran-Salazar, R.G.; Marino-Marmolejo, E.N.; Rodriguez-Campos, J.; Davila-Vazquez, G.; Contreras-Ramos, S.M. Use of Agave Bagasse for Production of an Organic Fertilizer by Pretreatment with Bjerkandera adusta and Vermicomposting with Eisenia fetida. Environ. Technol. 2016, 37, 1220–1231. [Google Scholar] [CrossRef] [PubMed]
- Barragán-Trinidad, M.; Buitrón, G. Pretreatment of agave bagasse with ruminal fluid to improve methane recovery. Waste Manag. 2024, 175, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Montiel, C.; Hernández-Meléndez, O.; Vivaldo-Lima, E.; Hernández-Luna, M.; Bárzana, E. Enhanced Bioethanol Production from Blue Agave Bagasse in a Combined Extrusion–Saccharification Process. Bioenergy Res. 2006, 9, 1005–1014. [Google Scholar] [CrossRef]
- Song, H.T.; Gao, Y.; Yang, Y.M.; Xiao, W.J.; Liu, S.H.; Xia, W.C.; Liu, Z.L.; Yi, L.; Jiang, Z.B. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates. Bioresour. Technol. 2016, 219, 710–715. [Google Scholar] [CrossRef] [PubMed]
- Zahoor, W.W.; Tan, X.; Guo, Y.; Zhang, B.; Chen, X.; Yu, Q.; Zhuang, X.; Yuan, Z. Mild Urea/KOH pretreatment to enhance enzymatic hydrolysis of corn stover with liquid waste recovery for plant growth. J. Clean. Prod. 2021, 284, 125392. [Google Scholar] [CrossRef]
- Duque, A.; Doménech, P.; Álvarez, C.; Ballesteros, M.; Manzanares, P. Study of the bioprocess conditions to produce bioethanol from barley straw pretreated by combined soda and enzyme-catalyzed extrusion. Renew. Energy 2020, 158, 263–270. [Google Scholar] [CrossRef]
- Gatt, E.; Khatri, V.; Bley, J.; Bernabé, S.; Vandenbossche, V.; Beauregard, M. Enzymatic hydrolysis of corn crop residues with high solid loadings: New insights into the impact of bioextrusion on biomass deconstruction using carbohydrate-binding modules. Bioresour. Technol. 2019, 282, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; van der Heide, E.; Wang, H.S.; Li, B.; Yu, G.; Mu, X.D. Alkaline twin-screw extrusion pretreatment for fermentable sugar production. Biotechnol. Biofuels 2013, 6, 97. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.J.; Keshwani, D.R.; Xu, Y.; Hanna, M.A. Alkali combined extrusion pretreatment of corn stover to enhance enzyme saccharification. Ind. Crops Prod. 2012, 37, 352–357. [Google Scholar] [CrossRef]
- Adsul, M.; Sandhu, S.K.; Singhania, R.R.; Gupta, R.; Puri, S.K.; Mathur, A. Designing a cellulolytic enzyme cocktail for the efficient and economical conversion of lignocellulosic biomass to biofuels. Enzyme Microb. Technol. 2020, 133, 109442–109452. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, S.; Rapoport, A.; Singh, B. Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review. Fermentation 2024, 10, 82. [Google Scholar] [CrossRef]
- Alokika; Singh, B. Enhanced production of bacterial xylanase and its utility in saccharification of sugarcane bagasse. Bioprocess Biosyst. Eng. 2020, 43, 1081–1091. [Google Scholar] [CrossRef]
- Tao, W.; Guo, L.; Meng, A.; Wang, L.; Ren, H.; Zhai, H. Effects of xylanase pretreatment on the quality of refiner mechanical mulberry branch fibers. Adv. Polym. Technol. 2019, 2019, 6252013. [Google Scholar] [CrossRef]
- Ghio, S.; Insanib, E.M.; Picchini, F.E.; Talia, P.M.; Grasso, D.H.; Campos, E. GH10 XynA is the main xylanase identified in the crude enzymatic extract of Paenibacillus sp. A59 when grown on xylan or lignocellulosic biomass. Microbiol. Res. 2016, 186, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Faria, N.T.; Marques, S.; Ferreira, F.C.; Fonseca, C. Production of xylanolytic enzymes by Moesziomyces spp. using xylose, xylan and brewery’s spent grain as substrates. New Biotechnol. 2019, 49, 137–143. [Google Scholar] [CrossRef]
- Šuchová, K.; Fehér, C.; Ravn, J.L.; Bedő, S.; Biely, P.; Geijer, C. Cellulose- and xylan-degrading yeasts: Enzymes, applications and biotechnological potential. Biotechnol. Adv. 2022, 59, 107981–108005. [Google Scholar] [CrossRef]
- Dhaver, P.; Pletschke, B.; Sithole, B.; Govinden, R. Optimization, purification, and characterization of xylanase production by a newly isolated Trichoderma harzianum strain by a two-step statistical experimental design strategy. Sci. Rep. 2022, 12, 17791–17809. [Google Scholar] [CrossRef]
- Faria, N.T.; Marques, S.; Cerejo, J.; Vorobieva, E.; Ferreira, F.C.; Fonseca, C. High cellulase-free xylanases production by Moesziomyces aphidis using low-cost carbon and nitrogen sources. J. Chem. Technol. Biotechnol. 2022, 97, 3076–3082. [Google Scholar] [CrossRef]
- Ghio, S.; Ontañon, O.; Picchini, F.E.; Madero Díaz de Villegas, R.; Talia, P.M.; Grasso, D.H.; Campos, E. Paenibacillus sp. A59 GH10 and GH11 Extracellular Endoxylanases: Application in Biomass Bioconversion. Bioenergy Res. 2018, 11, 174–190. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Ghose, T.K. Measurement of cellulase activities. Pure Appl. Chem. 1987, 59, 257–268. [Google Scholar] [CrossRef]
- Alokika; Singh, B. Production, characteristics, and biotechnological applications of microbial xylanases. Appl. Microbiol. Biotechnol. 2019, 103, 8763–8784. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; He, X.; Yan, L.; Wang, J.; Hu, X.; Sun, Q.; Zhang, H. Enhancing enzymatic hydrolysis of corn stover by twin-screw extrusion pretreatment. Ind. Crops Prod. 2020, 143, 111960–111967. [Google Scholar] [CrossRef]
- Fasheun, D.O.; Alves de Oliveira, R.; Bon, E.; da Silva, A.; Sposina Sobral Teixeira, R.; Santana Ferreira-Leitão, V. Dry extrusion pretreatment of cassava starch aided by sugarcane bagasse for improved starch saccharification. Carbohydr. Polym. 2022, 285, 119256–119266. [Google Scholar] [CrossRef] [PubMed]
- Duque, A.; Manzanares, P.; Ballesteros, M. Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Renew. Energy 2017, 114, 1427–1441. [Google Scholar] [CrossRef]
- Konan, D.; Koffi, E.; Ndao, A.; Peterson, E.C.; Rodrigue, D.; Adjallé, K. An Overview of Extrusion as a Pretreatment Method of Lignocellulosic Biomass. Energies 2022, 15, 3002. [Google Scholar] [CrossRef]
- Várnai, A.; Huikko, L.; Pere, J.; Siika-aho, M.; Viikari, L. Synergistic action of xylanase and mannanase improves the total hydrolysis of softwood. Bioresour. Technol. 2011, 19, 9096–9104. [Google Scholar] [CrossRef] [PubMed]
- Contreras, F.; Pramanik, S.; Rozhkova, A.M.; Zorov, I.N.; Korotkova, O.; Sinitsyn, A.P.; Schwaneberg, U.; Davari, M.D. Engineering Robust Cellulases for TailoredLignocellulosic Degradation Cocktails. Int. J. Mol. Sci. 2020, 21, 1589. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels 2011, 4, 36. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Yan, R.; Sun, Y.; Liu, M.; Zhou, L.; Li, D. Identification and Characterization of a Novel Hyperthermostable Bifunctional Cellobiohydrolase- Xylanase Enzyme for Synergistic Effect with Commercial Cellulase on Pretreated Wheat Straw Degradation. Front. Bioeng. Biotechnol. 2020, 8, 296. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.H.; Martel, A.; Grillo, I.; Jarvis, M.C. Hemicellulose binding and the spacing of cellulose microfibrils in spruce wood. Cellulose 2020, 27, 4249–4254. [Google Scholar] [CrossRef]
- Delfin-Ruíz, M.E.; Calderón-Santoyo, M.; Ragazzo-Sánchez, J.A.; Gómez-Rodríguez, J.; Aguilar-Uscanga, M.G. Ethanol Production from Enzymatic Hydrolysates Optimized of Agave tequilana Weber var. azul and Agave karwinskii bagasses. Bioenergy Res. 2021, 14, 785–798. [Google Scholar] [CrossRef]
- Arrizon, J.; Mateos, J.C.; Sandoval, G.; Aguilar, B.; Solis, J.; Aguilar, M.G. Bioethanol and xylitol production from different lignocellulosic hydrolysates by sequential fermentation. J. Food Process Eng. 2011, 35, 437–454. [Google Scholar] [CrossRef]
- Caspeta, L.; Caro-Bermúdez, M.A.; Ponce-Noyola, T.; Martinez, A. Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol. Appl. Energy 2014, 113, 277–286. [Google Scholar] [CrossRef]
- Láinez, M.; Ruiz, H.A.; Arellano-Plaza, M.; Martínez-Hernández, S. Bioethanol production from enzymatic hydrolysates of Agave salmiana leaves comparing S. cerevisiae and K. marxianus. Renew. Energy 2019, 138, 1127–1133. [Google Scholar] [CrossRef]
- Villegas-Silva, P.A.; Toledano-Thompson, T.; Canto-Canché, B.B.; Larqué-Saavedra, A.; Barahona-Pérez, L.F. Hydrolysis of Agave fourcroydes Lemaire (henequen) leaf juice and fermentation with Kluyveromyces marxianus for ethanol production. BMC Biotechnol. 2014, 14, 14. [Google Scholar] [CrossRef]
Composition | Raw BAB | Modified Extruded BAB | Extruded BAB [7] |
---|---|---|---|
Cellulose | 38.9 ± 0.9 | 50.8 ± 1.0 | 47.2 ± 0.9 |
Hemicellulose | 16.9 ± 1.3 | 16.1 ± 0.7 | 18.5 ± 0.4 |
Lignin | 22.2 ± 0.9 | 18.3 ± 0.9 | 16.4 ± 0.2 |
Mineral matter | 5.9 ± 0.7 | 3.9 ± 0.0 | -- |
Inert compounds | 16.1 ± 1.8 | 10.7 ± 0.7 | 8.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montiel, C.; Hernández-Meléndez, O.; Marques, S.; Gírio, F.; Tavares, J.; Ontañon, O.; Campos, E.; Bárzana, E. Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production. Sustainability 2024, 16, 6722. https://doi.org/10.3390/su16166722
Montiel C, Hernández-Meléndez O, Marques S, Gírio F, Tavares J, Ontañon O, Campos E, Bárzana E. Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production. Sustainability. 2024; 16(16):6722. https://doi.org/10.3390/su16166722
Chicago/Turabian StyleMontiel, Carmina, Oscar Hernández-Meléndez, Susana Marques, Francisco Gírio, João Tavares, Ornella Ontañon, Eleonora Campos, and Eduardo Bárzana. 2024. "Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production" Sustainability 16, no. 16: 6722. https://doi.org/10.3390/su16166722
APA StyleMontiel, C., Hernández-Meléndez, O., Marques, S., Gírio, F., Tavares, J., Ontañon, O., Campos, E., & Bárzana, E. (2024). Application of In-House Xylanases as an Addition to a Commercial Cellulase Cocktail for the Sustainable Saccharification of Pretreated Blue Agave Bagasse Used for Bioethanol Production. Sustainability, 16(16), 6722. https://doi.org/10.3390/su16166722