Evaluation of Agricultural Measures to Safeguard the Vulnerable Karst Groundwater Habitat of the Black Olm (Proteus anguinus parkelj) from Nitrate Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Modelling
2.3. Model Input Database
2.4. Model Setup, Calibration, and Validation
2.5. Scenarios
- − Nitrate nitrogen transported into the main channel in the groundwater loading from the HRU (kg N/ha per year (NO3GW);
- − Nitrate nitrogen leached from the soil profile (kg N/ha). Nitrate that leaches past the bottom of the soil profile during the time (NO3L);
- − Average annual total biomass (dry matter) per HRU (metric tons/ha) (BIOM);
- − Total nitrogen (TOT_N) transported with surface water flow from the subbasin (kg N/year);
- − Nitrate nitrogen (NO3_OUT) transported by surface water flow from the subbasin (kg N/year).
2.6. Model Performance Objective Functions
3. Results and Discussion
3.1. Sensitivity Analysis, Calibration, and Validation
3.2. Assessment of Agri-Environmental and Land Use Scenarios
3.2.1. Nitrate Leaching from the Hydrological Response Unit into Groundwater Flow
3.2.2. Nitrate Nitrogen Content in Surface Water at the Outlet of the Subbasin
3.3. Evaluating the Potential for Improving Black Olm Habitat by Adapting Agricultural Practices
- (a)
- These measures include supporting farms in acquiring the knowledge and financial resources needed to transition to sustainable farming practices [17,18,47]. Key recommendations are as follows: (i) Implement a diverse crop rotation that spans at least four years and includes a minimum of three different crops; (ii) Ensure that the soil is covered with cover crops or greening between the main summer or winter crops, preferably using winter resistant cover crops; (iii) Adopt shallow minimum tillage techniques, limiting tillage depth to 10 cm. It is important to note that bare soil without plant cover is more susceptible to nutrient leaching, and ploughing can accelerate the mineralisation of organic matter. Therefore, it is advisable to carry out tillage and sowing within a few days of each other. The proposed measures will involve short-term costs for purchasing seeds for cover crops or additional plants in the rotation. The shift from ploughing to minimum tillage is the most significant expense, which only the largest farmers can typically afford on their own. However, the long-term economic benefits of transitioning to sustainable tillage methods will provide much greater advantages for the environment and improve the productive capacity of agricultural soils.
- (b)
- Including legumes, such as DTM and clover, in the existing crop rotation can help reduce the use of fertilisers. Research from the URAVIVO project has indicated that in some cases, nitrogen fertiliser doses can be reduced by 20% without adversely affecting yields [48,49]. This consideration was incorporated when developing the proposal for the extended R3 scenario rotation. It is recommended that professional services put more effort into promoting crops that require lower nitrogen inputs for growth, such as clover and clover–grass mixes. Raising awareness about the necessity of reducing both the frequency and amount of fertiliser applications while promoting controlled-release fertilisers will yield beneficial economic outcomes for farms. Legumes that require added fertiliser in their production technology, such as fodder peas and soybeans, should not be promoted in the study area to minimise fertiliser use further. Additionally, the mineralisation of underground plant residues can impact N leaching [50].
- (c)
- A comparison of various farming scenarios indicates that cultivation practices involving higher nitrogen (N) inputs can adversely affect the nitrogen balance in the soil, leading to increased nitrogen leaching. It is crucial to note that a single cultivation technology may not be universally effective across different soil types. While a particular practice may have a minimal impact on the nitrogen balance in deeper soils or those with a clay-loam texture, it can result in significantly greater nitrogen leaching in shallower soils. The findings highlight the importance of managing agricultural practices according to specific soil characteristics, such as depth, texture, and skeletalness, to mitigate potential negative nitrogen balances. Developing a precise soil map, ideally at scales of 1:10,000 or 1:5000, grounded in field soil sampling is one of the essential tools to estimate groundwater vulnerability in karst and to implement _targeted management [29,42,43].
- (d)
- A comparative analysis of crop rotations following the fertiliser guidelines has revealed that, in certain instances, fertilisers are applied at doses that are technically appropriate but may not correspond to the specific soil types and geological conditions prevalent in the region. It is essential to strengthen oversight in implementing existing measures delineated in the nature protection and groundwater protection legislation and CAP, particularly concerning Conditionality [26,51,52,53]. To this end, it is recommended that one or more representative experimental plots showcasing diverse soil types be established in critical areas. These plots will enable the evaluation of agri-environmental measures on plant growth, yield, nitrogen leaching, pesticide usage and cost of production. Furthermore, they can function as effective educational tools for farmers, illustrating the practical benefits of these measures on environmental and economic performance. In addition, it is imperative to augment the number of individual consultations available to farmers, focusing on agricultural technologies tailored to each farm’s distinctive characteristics.
- (e)
- Organic farming can exhibit similar nitrogen (N) leaching levels as conventional practices when pursuing equivalent yields per hectare. However, in promoting organic farming, it is essential to avoid nitrogen surpluses from fresh organic fertilisers (livestock) and to promote composted manure and green manure. Weather conditions significantly influence nitrogen mineralisation from organic fertilisers and cannot be fully controlled [50,54]. Additionally, soil characteristics, including depth, texture, and water-holding capacity, must be considered when developing fertiliser strategies and agricultural practices.
- (f)
- Intensive grasslands with more frequent cuts show a positive nitrogen (N) balance across various scenarios. Soil properties play a crucial role, especially with manure, slurry, or grazing on shallow soils typical of karst regions [55]. In areas with significant grassland, promoting extensive grazing by herbivores is beneficial. Incentives should support the breeding of suckler cows and small ruminants like sheep and goats, which have lower stocking densities (currently 0.48 livestock units per hectare). This helps improve the distribution of organic fertilisers and nutrient utilisation. Agricultural professionals should focus on educating farmers about grassland management, including aeration, seeding, liming, and proper fertilisation practices. A diverse and dense grassland enhances harvested yield and nutrient use, reduces nutrient losses and minimises environmental impact [56,57]. It is essential to define the type of livestock, stocking density, and appropriate fertilisers with the help of experts, ensuring sustainable environmental and economic outcomes [58].
- (g)
- In the studied area, a significant portion of the land is dedicated to orchards and vineyards, which share similarities with grasslands due to their inter-row cultivation type. From a nitrogen balance perspective, fruit farming is a favourable option. Over recent decades, fertiliser application methods in fruit and grape cultivation have evolved, driven by new insights into the adverse effects of excessive fertilisation on crop quality and storage capacity [59,60]. However, viticulture and fruit growing face challenges related to irrigation and pesticide use. Ensuring a reliable water source is crucial for achieving optimal yield in quantity and quality. However, extracting water from subterranean aquifers could further strain the habitat of the black olm. Phytopharmaceuticals, including fungicides, insecticides, and herbicides, play a vital role in producing fruits and grapes. Therefore, it is essential to manage pesticide application effectively, utilising professional services that guide growers toward sustainable practices. These practices should emphasise preventive measures such as repellents, disruptors, and baits. To evaluate these measures, it is important to assess their impact on subterranean habitats and sensitive species, including the black olm.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Culver, D.C.; Pipan, T. The Biology of Caves and Other Subterranean Habitats, 2nd ed.; Biology of habitats series; Oxford Academic: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Zagmajster, M.; Malard, F.; Eme, D.; Culver, D.C. Subterranean Biodiversity Patterns from Global to Regional Scales. In Cave Ecology; Moldovan, O.T., Kováč, L., Halse, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 195–227. [Google Scholar] [CrossRef]
- Bregović, P.; Zagmajster, M. Understanding hotspots within a global hotspot—Identifying the drivers of regional species richness patterns in terrestrial subterranean habitats. Insect Conserv. Divers. 2016, 9, 268–281. [Google Scholar] [CrossRef]
- Aljančič, G. History of research on Proteus anguinus Laurenti 1768 in Slovenia/Zgodovina raziskovanja človeške ribice (Proteus anguinus Laurenti 1768) v Sloveniji. Folia Biol. Geol. 2019, 60, 39–69. [Google Scholar] [CrossRef]
- The Black Olm/Črna Človeška Ribica. Available online: https://repozitorij.uni-lj.si/IzpisGradiva.php?id=37125&lang=eng (accessed on 8 September 2024).
- Koren, K.; Brajkovič, R.; Bajuk, M.; Vraničar, Š.; Fabjan, V. Hydrogeological characterisation of karst springs of the white (Proteus anguinus anguinus) and black olm (Proteus anguinus parkelj) habitat in Bela krajina (SE Slovenia). Geologija 2023, 66, 151–166. [Google Scholar] [CrossRef]
- Mezga, K.; Janža, M.; Prestor, J.; Koren, K.; Šram, D. Groundwater dependent ecosystems—Groundwater status indicators. Nat. Slov. 2016, 18, 35–42. [Google Scholar] [CrossRef]
- Jensen, K.M.; Jensen, M.H.; Kristensen, E. Nitrification and denitrification in Wadden Sea sediments (Königshafen, Island of Sylt, Germany) as measured by nitrogen isotope pairing and isotope dilution. Aquat. Microb. Ecol. 1996, 11, 181–191. [Google Scholar] [CrossRef]
- Scott, G.; Crunkilton, R.L. Acute and chronic toxicity of nitrate to fathead minnows (Pimephales promelas), ceriodaphnia dubia, and Daphnia magna. Environ. Toxicol. Chem. 2000, 19, 2918–2922. [Google Scholar] [CrossRef]
- Mali, L.B.; Sket, B. History and biology of the «black proteus« (Proteus anguinus parkelj Sket & Arntzen 1994; Amphibia: Proteidae): A review/Zgodovina in biologija črnega močerila (Proteus anguinus parkelj Sket & Arntzen 1994; Amphibia: Proteidae): Pregledni članek. Folia Biol. Geol. 2019, 60, 5–37. [Google Scholar] [CrossRef]
- Kolar, B. The threshold concentration for nitrate in groundwater as a habitat of Proteus anguinus. Nat. Slov. 2018, 20, 39–42. [Google Scholar] [CrossRef]
- Palmer, A.N. Geomorphic interpretation of karst features. In Groundwater as a Geomorphic Agent; Routledge: London, UK, 1984; pp. 173–209. [Google Scholar] [CrossRef]
- Lisec, A.; Montanarella, L.; Vrščaj, B.; Kralj, T.; Lobnik, F.; Suhadolc, M.; Prus, T.; Mihelič, R.; Rupreht, J.; Zupan, M.; et al. Tla Slovenije s Pedološko Karto v Merilu 1:250000 = Soils of Slovenia with Soil Map 1:250000. European Commission Joint Reaearch Centre (JRC): Publications Office of the European Union, Luxembourg. 2005. Available online: https://op.europa.eu/sl/publication-detail/-/publication/538dee5b-dfbf-45d6-bc3c-d4b6fab3110d (accessed on 25 October 2024).
- Urbančič, M.; Simončič, P.; Prus, T.; Kutnar, L. Atlas of Slovenian Forest Soils/Atlas Gozdnih tal Slovenije. Gozdarski Inštitut Slovenije, Ljubljana. 2005. Available online: https://plus.cobiss.net/cobiss/si/sl/bib/223504896 (accessed on 25 October 2024).
- Tuyet, D. Characteristics of Karst Ecosystems of Vietnam and Their Vulnerability to Human Impact. Acta Geol. Sin.—Engl. Ed. 2001, 75, 325–329. [Google Scholar] [CrossRef]
- Bakalowicz, M. Karst groundwater: A challenge for new resources. Hydrogeol. J. 2005, 13, 148–160. [Google Scholar] [CrossRef]
- Coxon, C. Agriculture and Karst. In Karst Management; Beynen, P.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 103–138. [Google Scholar] [CrossRef]
- Guo, F.; Yuan, D.; Qin, Z. Groundwater Contamination in Karst Areas of Southwestern China and Recommended Countermeasures. Acta Carsologica 2010, 39, 389–399. [Google Scholar] [CrossRef]
- Zeiger, S.J.; Owen, M.R.; Pavlowsky, R.T. Simulating non-point source pollutant loading in a karst basin: A SWAT modeling application. Sci. Total Environ. 2021, 785, 147295. [Google Scholar] [CrossRef]
- Lukač Reberski, J.; Terzić, J.; Maurice, L.D.; Lapworth, D.J. Emerging organic contaminants in karst groundwater: A global level assessment. J. Hydrol. 2022, 604, 127242. [Google Scholar] [CrossRef]
- Fenton, O.; Mellander, P.E.; Daly, K.; Wall, D.P.; Jahangir, M.M.R.; Jordan, P.; Hennessey, D.; Huebsch, M.; Blum, P.; Vero, S.; et al. Integrated assessment of agricultural nutrient pressures and legacies in karst landscapes. Agric. Ecosyst. Environ. 2017, 239, 246–256. [Google Scholar] [CrossRef]
- Stevanović, Z.; Stevanović, A.M. Monitoring as the Key Factor for Sustainable Use and Protection of Groundwater in Karst Environments—An Overview. Sustainability 2021, 13, 5468. [Google Scholar] [CrossRef]
- Brad, T.; Bizic, M.; Ionescu, D.; Chiriac, C.M.; Kenesz, M.; Roba, C.; Ionescu, A.; Fekete, A.; Mirea, I.C.; Moldovan, O.T. Potential for Natural Attenuation of Domestic and Agricultural Pollution in Karst Groundwater Environments. Water 2022, 14, 1597. [Google Scholar] [CrossRef]
- Quality of Groundwater/Kakovost Podzemne Vode. Available online: https://kazalci.arso.gov.si/sl/content/kakovost-podzemne-vode-1?tid=16 (accessed on 20 October 2024).
- Nitrates Directive (91/676/EEC). Available online: https://environment.ec.europa.eu/topics/water/nitrates_en (accessed on 20 October 2024).
- Slovenian Strategic Plan for the Common Agricultural Policy 2023–2027. Available online: https://skp.si/skupna-kmetijska-politika-2023-2027 (accessed on 10 September 2024).
- Glavan, M.; Cvejić, R.; Zupanc, V.; Vodnik, K.; Pintar, M. Modeling the Environmental Impact of Agricultural Measures to Protect the Habitat of the Black Mantis (Proteus anguinus) from Nitrate Pollution/Modeliranje Okoljskega Vpliva Kmetijskih Ukrepov za Varovanje Habitata Črne Človeške (Proteus anguinus Parkelj) pred Onesnaženjem z Nitrati; Biotechnical Faculty, University of Ljubljana: Ljubljana, Slovenia, 2024; Available online: https://plus.cobiss.net/cobiss/si/sl/bib/210724355 (accessed on 20 October 2024).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Griensven, A.; van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Busico, G.; Colombani, N.; Fronzi, D.; Pellegrini, M.; Tazioli, A.; Mastrocicco, M. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanised basin. J. Environ. Manag. 2020, 266, 110625. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Čerkasova, N.; Mėžinė, J.; Idzelytė-, R.; Lesutienė, J.; Ertürk, A.; Umgiesser, G. Exploring variability in climate change projections on the Nemunas River and Curonian Lagoon: Coupled SWAT and SHYFEM modeling approach. Ocean. Sci. 2024, 20, 1123–1147. [Google Scholar] [CrossRef]
- Plunge, S.; Schürz, C.; Čerkasova, N.; Strauch, M.; Piniewski, M. SWAT+ model setup verification tool: SWATdoctR. Environ. Model. Softw. 2024, 171, 105878. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Wan, L.; Cao, J.; Zhang, Q.; Yang, C. The effects of landscape pattern evolution on runoff and sediment based on SWAT model. Environ. Earth Sci. 2021, 80, 2. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J. Soil Water Characteristic Estimates by Texture and Organic Matter for Hydrologic Solutions. Soil Sci. Soc. Am. J. 2006, 70, 1569–1578. [Google Scholar] [CrossRef]
- Saxton, K.E.; Rawls, W.J.; Romberger, J.S.; Papendick, R.I. Estimating Generalized Soil-water Characteristics from Texture. Soil Sci. Soc. Am. J. 1986, 50, 1031–1036. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Vaghefi, S.A.; Srinivasan, R. A Guideline for Successful Calibration and Uncertainty Analysis for Soil and Water Assessment: A Review of Papers from the 2016 International SWAT Conference. Water 2018, 10, 6. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Liew MW van Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Binet, S.; Joigneaux, E.; Pauwels, H.; Albéric, P.; Fléhoc, C.; Bruand, A. Water exchange, mixing and transient storage between a saturated karstic conduit and the surrounding aquifer: Groundwater flow modeling and inputs from stable water isotopes. J. Hydrol. 2017, 544, 278–289. [Google Scholar] [CrossRef]
- Rusjan, S.; Sapač, K.; Petrič, M.; Lojen, S.; Bezak, N. Identifying the hydrological behavior of a complex karst system using stable isotopes. J. Hydrol. 2019, 577, 123956. [Google Scholar] [CrossRef]
- Wang, Z.J.; Yue, F.J.; Lu, J.; Wang, Y.C.; Qin, C.Q.; Ding, H.; Xue, L.L.; Li, S.L. New insight into the response and transport of nitrate in karst groundwater to rainfall events. Sci. Total Environ. 2022, 818, 151727. [Google Scholar] [CrossRef]
- Moreno-Gómez, M.; Liedl, R.; Stefan, C.; Pacheco, J. Theoretical analysis and considerations of the main parameters used to evaluate intrinsic karst groundwater vulnerability to surface pollution. Sci. Total Environ. 2024, 907, 167947. [Google Scholar] [CrossRef] [PubMed]
- Bakalowicz, M. Management of Karst Groundwater Resources. In Karst Management; Beynen, P.E., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 263–282. [Google Scholar] [CrossRef]
- Research to Identify and Prevent Pollution of the Catchment Hinterland of Jelševniščica and Otovski breg, with Special Attention to the Habitat of the Black Olm/Raziskave za opredelitev in preprečevanje obremenjevanja vodozbirnega zaledja Jelševniščice in Otovskega brega, s posebnim ozirom na habitat črne človeške ribice. ZRC SAZU, Ljubljana. 2024. Available online: https://izrkp.zrc-sazu.si/sl/programi-in-projekti/raziskave-za-opredelitev-in-preprecevanje-obremenjevanja-vodozbirnega-zaledja (accessed on 5 November 2024).
- Prelovšek, M.; Curk, M.; Mali, N.; Mulec, J.; Petrič, M.; Pintar, M.; Urbanc, J.; Cvejić, R. Research to identify and prevent pollution of the catchment hinterland of Jelševniščica and Otovski breg, with special attention to the habitat of the black olm/Raziskave za opredelitev in preprečevanje obremenjevanja vodozbirnega zaledja Jelševniščice in Otovskega brega, s posebnim ozirom na habitat črne človeške ribice. In Proceedings of the 33. Mišičev Vodarski Dan 2022, Maribor, Slovenia, 5 October 2022; Available online: https://www.mvd20.com/LETO2022/R16.pdf (accessed on 20 October 2024).
- Sresung, M.; Paisantham, P.; Ruksakul, P.; Kongprajug, A.; Chyerochana, N.; Gallage, T.P.; Srathongneam, T.; Rattanakul, S.; Maneein, S.; Surasen, C.; et al. Microbial source tracking using molecular and cultivable methods in a tropical mixed-use drinking water source to support water safety plans. Sci. Total Environ. 2023, 876, 162689. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Jiang, G. Karst Groundwater Management through Science and Education. Open J. Geol. 2011, 1, 45–50. [Google Scholar] [CrossRef]
- Pintar, M.; Arh Marinčič, Š.; Cerar, S.; Cesar, A.; Curk, M.; Cvejić, R.; Glavan, M.; Kastelec, D.; Koroša, A.; Korpar, P.; et al. Efficient Use of Water and Nutrients in Crop Production to Protect and Improve Drinking Water Resources: URaViVO: Final Report/Učinkovitejša Raba Vode in Hranil v Rastlinski Pridelavi za Varovanje in Izboljšanje Virov Pitne Vode: URaViVO: Končno Poročilo; Biotechnical Faculty, University of Ljubljana: Ljubljana, Slovenia, 2021; Available online: https://plus.cobiss.net/cobiss/si/sl/bib/101641475 (accessed on 1 November 2024).
- Curk, M.; Glavan, M. Assessing and Mapping the Environmental Impacts of Best Management Practices in Nitrate-Vulnerable Areas. Water 2023, 15, 2364. [Google Scholar] [CrossRef]
- Benoit, M.; Garnier, J.; Billen, G.; Tournebize, J.; Gréhan, E.; Mary, B. Nitrous oxide emissions and nitrate leaching in an organic and a conventional cropping system (Seine basin, France). Agric. Ecosyst. Environ. 2015, 213, 131–141. [Google Scholar] [CrossRef]
- Giordano, R.; D’Agostino, D.; Apollonio, C.; Scardigno, A.; Pagano, A.; Portoghese, I.; Lamaddalena, N.; Piccinni, A.F.; Vurro, M. Evaluating acceptability of groundwater protection measures under different agricultural policies. Agric. Water Manag. 2015, 147, 54–66. [Google Scholar] [CrossRef]
- Goldscheider, N. A holistic approach to groundwater protection and ecosystem services in karst terrains. Carbonates Evaporites 2019, 34, 1241–1249. [Google Scholar] [CrossRef]
- Ravbar, N.; Šebela, S. The effectiveness of protection policies and legislative framework with special regard to karst landscapes: Insights from Slovenia. Environ. Sci. Policy 2015, 51, 106–116. [Google Scholar] [CrossRef]
- Pandey, A.; Li, F.; Askegaard, M.; Rasmussen, I.A.; Olesen, J.E. Nitrogen balances in organic and conventional arable crop rotations and their relations to nitrogen yield and nitrate leaching losses. Agric. Ecosyst. Environ. 2018, 265, 350–362. [Google Scholar] [CrossRef]
- Valkama, E.; Rankinen, K.; Virkajärvi, P.; Salo, T.; Kapuinen, P.; Turtola, E. Nitrogen fertilisation of grass leys: Yield production and risk of N leaching. Agric. Ecosyst. Environ. 2016, 230, 341–352. [Google Scholar] [CrossRef]
- Egan, G.; McKenzie, P.; Crawley, M.; Fornara, D.A. Effects of grassland management on plant nitrogen use efficiency (NUE): Evidence from a long-term experiment. Basic Appl. Ecol. 2019, 41, 33–43. [Google Scholar] [CrossRef]
- Leimer, S.; Oelmann, Y.; Wirth, C.; Wilcke, W. Time matters for plant diversity effects on nitrate leaching from temperate grassland. Agric. Ecosyst. Environ. 2015, 211, 155–163. [Google Scholar] [CrossRef]
- Klaus, V.H.; Friedritz, L.; Hamer, U.; Kleinebecker, T. Drought boosts risk of nitrate leaching from grassland fertilisation. Sci. Total Environ. 2020, 726, 137877. [Google Scholar] [CrossRef] [PubMed]
- Brunetto, G.; Oliveira, B.S.; Ambrosini, V.G.; Couto, R.d.R.; Sete, P.B.; dos Santos Junior, E.; Loss, A.; da Silva, L.O.S.; Gatiboni, L.C. Nitrogen availability in an apple orchard with weed management. Ciência Rural 2018, 48, e20160895. [Google Scholar] [CrossRef]
- He, Z.; Hu, Q.; Zhang, Y.; Cao, H.; Nan, X. Effects of irrigation and nitrogen management strategies on soil nitrogen and apple yields in loess plateau of China. Agric. Water Manag. 2023, 280, 108220. [Google Scholar] [CrossRef]
- Sket, B. Discovering the black proteus Proteus anguinus parkelj (Amphibia: Caudata). Nat. Slov. 2017, 19, 27–28. [Google Scholar] [CrossRef]
- Kosič Ficco, K.; Sasowsky, I.D. An interdisciplinary framework for the protection of karst aquifers. Environ. Sci. Policy 2018, 89, 41–48. [Google Scholar] [CrossRef]
Weather | Unit | Data Source |
precipitation | mm day−1 | Slovenian Environmental Agency (ARSO) Gauging stations Dobliče (precipitation, temperature, wind, relative humidity), Novo mesto (sun) |
min. and max. temperature | °C day−1 | |
relative humidity | fraction | |
global radiation energy (sun hours) | (h day−1) | |
average wind speed | km day−1 | |
Soil | ||
digital soil map, soil horizons, colour | .shp | Ministry of Agriculture, Forestry and Food of the Republic of Slovenia (MKGP) |
soil depth, roth depth | cm | |
texture (clay, silt, sand), organic matter | mass % | |
soil density | cm3 cm−3 | Calculation of pedotransfer functions based on digital soil map data (MKGP) |
field capacity, wilting point | cm cm−1 | |
saturated hydraulic conductivity | cm h−1 | |
soil erosivity—MUSLE | calculation | |
Crop production techniques | ||
crop type and rotation, sowing/planting/harvesting time | Farmers Agricultural advisory service (KGZ Novo mesto) | |
fertiliser type and method of application, equipment use scheduler, depth of cultivation | ||
Land | ||
actual land use | .shp | MKGP |
digital elevation model | raster | Geodetic Survey RS (GURS) |
Water | ||
river flow—Lahinja gauging station Gradac (1992–2022) | m3/s | ARSO |
karst springs (2021–2022) | Institute for Karst Research (ZRC SAZU) | |
nitrate content—Lahinja gauging station Gradac (2021–2022) | (mg/L NO3−) | ARSO |
monthly nitrate content (09/2021–11/2022) | ZRC SAZU | |
karst springs subbasins | .shp | ZRC SAZU |
Scenarios | |||
---|---|---|---|
No. | Name | Description | |
Arable Land | Grassland | ||
0 | BASE (B) | 4-year rotation, no greening in 2nd year after winter wheat maize/wheat + no greening/maize/barley + clover–grass mix | 3 cuts |
AGRICULTURAL CROP ROTATION CHANGE SCENARIOS | |||
1 | ROTATION (R1) | 2-year rotation maise/winter barley + summer maize + clover–grass mix (CGM) | 3 cuts |
2 | ROTATION 1 (R2) | B + CGM in 2nd year (maize/wheat + CGM/maize/barley + CGM) | 3 cuts |
3 | ROTATION 2 (R3) | R2 + 20% decrease in fertilisation (maize/wheat + CGM/maize/barley + CGM) | 3 cuts |
4 | ROTATION 3 (R4) | 6-year rotation R3 + additional 2 years of CGM (maize/wheat + CGM/maize/barley + CGM/CGM/CGM | 3 cuts |
5 | ROTATION 4 (R5) | 6-year rotation R4 + winter fodder peas (WFP) replaced winter wheat (maize/WFP + CGM/maize/barley + CGM/CGM/CGM | 3 cuts |
AGRICULTURAL LAND USE CHANGE SCENARIOS | |||
6 | EXTENSIVE 1 (E1) | B + selected fields into grassland (3 cuts) (slope > 7%, Soil PKE type: 1508, 1536, 1537, 1561, 1573) | 3 cuts |
7 | EXTENSIVE 2 (E2) | B + all fields into grassland (3 cuts) | 3 cuts |
8 | EXTENSIVE 3 (E3) | B + selected fields into unfertilised grassland (1 cut) (slope > 7%, Soil PKE type: 1508, 1536, 1537, 1561, 1573) | 1 cut |
9 | EXTENSIVE 4 (E4) | B + all fields into unfertilised grassland (1 cut) | 1 cut |
10 | EXTENSIVE 5 (E5) | B + E4 + all grassland into forest | / |
11 | EXTENSIVE 6 (E6) | R5 + selected grasslands into fields (slope < 7, Soil PKE type: 1578, 1579, 1583) | 3 cuts |
SWAT File | SWAT Parameters | Range | Default Value | Final Value | |
---|---|---|---|---|---|
River Flow | |||||
.gw | GW_DELAY | Groundwater delay | 0–500 | 31 | 3 |
ALPHA_BF | Baseflow alpha factor | 0–1 | 0.048 | 0.70 | |
GWQMN | Threshold depth of water in the shallow aquifer required for return flow to occur | 0–5000 | 1000 | 500 | |
GW_REVAP | Groundwater “revap” coefficient | 0.02–0.2 | 0.02 | 0.02 | |
RCHRG_DP | Deep aquifer percolation fraction | 0–1 | 0.05 | 0.01 | |
REVAPMN | Threshold depth of water in the shallow aquifer for “revap” to occur | 0–1000 | 750 | 750 | |
.mgt | CN2 | SCS runoff curve number for moisture condition 2 | 0–100 | variable | −14.4% |
.hoe | ESCO | Soil evaporation compensation factor | 0–1 | 0.95 | 1.00 |
SURLAG | Surface runoff lag time | 0.01–24 | 4 | 4.00 | |
.bsn | SFTMP | Snowfall temperature (°C) | –5–5 | 1 | 2.3 |
SMTMP | Snow melt base temperature (°C) | –5–5 | 0.5 | 3.515 | |
SMFMX | Maximum melt rate for snow during the year (occurs on summer solstice) (°C) | 0–10 | 4.5 | 2.377 | |
SMFMN | Minimum melt rate for snow during the year (occurs on winter solstice) (°C) | 0–10 | 4.5 | 3.457 | |
TIMP | Snowpack temperature lag factor | 0–1 | 1 | 0.203 | |
SNOCOVMX | Minimum snow water content that corresponds to 100% snow cover | 0–500 | 1 | 31.429 | |
Nitrogen load | |||||
.bsn | CMN | Rate factor for humus mineralisation of active organic nitrogen | 0.001–0.003 | 0.0003 | 0.003 |
RCN | The concentration of nitrogen in rainfall | 0–15 | 0.9 | 1.150 | |
CDN | Denitrification exponential rate coefficient | 0–3 | 0.0003 | 1.4 | |
.gw | HLIFE_NGW | Half-life of Nitrate in the shallow aquifer [days] | 1–365 | 0 | 32.5–365 |
.sep | ISEP_TYP | The type of septic system | 1–100 | 1 | 1 |
SEP_DEN | Number of septic systems per square kilometre (only urban land use) | 0.001–500 | 1.5 | 280 | |
ISP_OPT | Current condition of OWS (1 = active septic, 2 = failing septic, 0 = non-septic) | 0–2 | 0 | 1 | |
SEP_CAP | Number of permanent residents in the house | 1–10,000 | 2.5 | 2.5 | |
Databases SepticWQ | SPTQ | Septic tank effluent (STE) flow rate (m3/capita/day) | 0–1 | 0.227 | 0.227 |
IDSPTTYPE | Type of a septic system | 1–3 | 1 | 1 |
Objective Functions of Model Performance Observed vs. Simulated | |||
NSE | R2 | PBIAS | |
Gradac gauging station—River Lahinja—daily data | |||
Flow Calibration (1998–2010) | 0.59 | 0.61 | 0.09 |
Flow Validation (2011–2022) | 0.69 | 0.71 | −2.28 |
Nitrate nitrogen Calibration (2021–2022) | - | - | 12.74 |
Karst springs—Calibration (2021–2022)—average annual values | |||
PBIAS | |||
Subbasin | Name | River flow | Nitrate nitrogen |
1 | Dobličica | 7.56 | 0.01 |
8 | Obršec | −5.60 | 0.04 |
9 | Jelševniščica | 3.14 | −0.15 |
11 | Janževe loke | 0.69 | −0.28 |
10 | Šprajcarjev zdenec | 27.86 | 5.66 |
14 | Talački breg | 1.02 | −0.04 |
16 | Pački breg | −14.25 | −0.08 |
18 | Otovski breg | −11.01 | −0.12 |
17 | Brežiček | −38.88 | 0.07 |
19 | Stobe | −80.54 | −0.20 |
20 | Planinc | −57.69 | −0.16 |
Simulated Annual Averages (1998–2022) | CROPLAND | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Subbasin Name and Number | |||||||||||
Dobličica | Obršec | Jelševnik | Janževe Loke | Šprajcarjev Zdenec | Talački Breg | Pački Breg | Brežiček | Otovski Breg | Stobe | Planinc | |
1 | 8 | 9 | 10 | 11 | 14 | 16 | 17 | 18 | 19 | 20 | |
Nitrate transported into the main channel in the groundwater loading from the HRU (NO3GW) (kg N/ha year) | |||||||||||
BASE model (kg N/ha year) | 23 | 21 | 15 | 8 | 32 | 25 | 7 | 18 | 16 | 8 | 22 |
StDv | 17 | 16 | 12 | 7 | 21 | 18 | 7 | 14 | 13 | 7 | 15 |
SCENARIOS | Change (%) in the amount of nitrate nitrogen (N-NO3−) | ||||||||||
R1 | 67 | 64 | 63 | 70 | 68 | 69 | 70 | 66 | 66 | 69 | 62 |
R2 | −16 | −15 | −12 | −18 | −16 | −17 | −17 | −18 | −18 | −17 | −16 |
R3 | −38 | −38 | −35 | −39 | −37 | −39 | −40 | −39 | −40 | −36 | −36 |
R4 | −68 | −68 | −66 | −67 | −66 | −68 | −68 | −67 | −68 | −65 | −66 |
R5 | −52 | −52 | −50 | −50 | −51 | −52 | −52 | −51 | −52 | −48 | −49 |
Nitrate leached from the soil profile (NO3L) (kg N/ha year) | |||||||||||
BASE model (kg N/ha year) | 61 | 65 | 73 | 66 | 64 | 60 | 66 | 68 | 61 | 72 | 75 |
StDv | 46 | 48 | 58 | 45 | 44 | 44 | 47 | 46 | 45 | 46 | 47 |
SCENARIOS | Change (%) in the amount of nitrate nitrogen (N-NO3−) | ||||||||||
R1 | 70 | 68 | 64 | 69 | 70 | 72 | 70 | 70 | 71 | 66 | 64 |
R2 | −13 | −12 | −8 | −13 | −14 | −15 | −14 | −13 | −14 | −12 | −11 |
R3 | −35 | −35 | −31 | −34 | −35 | −37 | −36 | −34 | −36 | −32 | −31 |
R4 | −66 | −65 | −62 | −64 | −64 | −66 | −66 | −64 | −65 | −62 | −62 |
R5 | −50 | −49 | −47 | −48 | −48 | −50 | −50 | −48 | −49 | −46 | −46 |
Total plant biomass (BIOM) (metric tons/ha year) | |||||||||||
BASE model (kg N/ha year) | 25 | 25 | 24 | 26 | 26 | 26 | 26 | 26 | 26 | 26 | 26 |
StDv | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
SCENARIOS | Change (%) in the amount of biomass (dry matter) | ||||||||||
R1 | 16 | 16 | 16 | 17 | 17 | 17 | 17 | 17 | 16 | 16 | 16 |
R2 | 18 | 18 | 18 | 19 | 19 | 18 | 18 | 19 | 18 | 18 | 18 |
R3 | 14 | 14 | 15 | 15 | 15 | 15 | 15 | 15 | 14 | 14 | 14 |
R4 | −5 | −4 | −3 | −4 | −4 | −4 | −4 | −4 | −5 | −5 | −4 |
R5 | −1 | 0 | 1 | −1 | −1 | −1 | 0 | −1 | −1 | −1 | −1 |
Soil Type | Soil Properties | Nitrate Leached Below Soil Profile (NO3L) | Total Plant Biomass (BIOM) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PKE ID | Depth (mm) | Hydrological Group | Texture (%) | (kg N/ha Year) | (Metric Tons of Dry Matter/ha Year) | ||||||
Description | Clay | Silt | Sand | Cropland | Grassland | Sum | Cropland | Grassland | |||
1508 | 1100 | B | silty loam | 21 | 66 | 13 | 56 | 6 | 27 | 26 | 9 |
1536 | 700 | B | silty loam | 17 | 66 | 17 | - | 11 | 11 | - | 8 |
1537 | 950 | C | silty loam | 24 | 69 | 7 | 57 | 6 | 21 | 25 | 8 |
1561 | 250 | D | silty clay loam | 37 | 57 | 6 | 118 | 16 | 37 | 17 | 7 |
1565 | 1000 | C | loam | 14 | 48 | 38 | 68 | 8 | 38 | 25 | 9 |
1573 | 1200 | D | silty clay loam | 27 | 64 | 9 | 59 | 7 | 29 | 26 | 9 |
1577 | 800 | C | silty loam | 20 | 73 | 7 | 70 | 8 | 36 | 24 | 8 |
1578 | 920 | B | silty loam | 15 | 74 | 10 | 71 | 8 | 38 | 26 | 9 |
1579 | 900 | C | sandy loam | 6 | 38 | 55 | 72 | 9 | 40 | 23 | 9 |
1581 | 1200 | B | silty loam | 18 | 62 | 20 | 59 | 6 | 29 | 27 | 9 |
1583 | 1200 | C | silty loam | 16 | 72 | 12 | 54 | 6 | 30 | 27 | 9 |
401 | 1300 | B | silty loam | 14 | 79 | 7 | 56 | 6 | 27 | 28 | 9 |
Average | 64 | 8 | 32 | 25 | 9 |
Simulated Annual Averages (1998–2022) | Subbasin Name and No. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Dobličica | Obršec | Jelševnik | Janževe Loke | Šprajcarjev Zdenec | Talački Breg | Pački Breg | Brežiček | Otovski Breg | Stobe | Planinc | |
1 | 8 | 9 | 10 | 11 | 14 | 16 | 17 | 18 | 19 | 20 | |
Total nitrogen transported out of reach (TOT_N) at subbasin outflow (kg N/year) | |||||||||||
Base model (kg N/year) | 34,490 | 4210 | 10,511 | 360 | 6299 | 5705 | 9619 | 564 | 7342 | 267 | 265 |
StDv | 10,791 | 1257 | 3206 | 106 | 1812 | 1837 | 2794 | 160 | 2164 | 75 | 82 |
SCENARIO | Change (%) in the amount of nitrate nitrogen (N-NO3−) | ||||||||||
R1 | 2 | 4 | 2 | 5 | 13 | 2 | 8 | 11 | 10 | 12 | 14 |
R2 | −2 | −6 | −4 | −18 | −14 | −2 | −17 | −22 | −17 | −34 | −23 |
R3 | −2 | −8 | −5 | −20 | −19 | −3 | −20 | −26 | −21 | −39 | −28 |
R4 | −4 | −11 | −7 | −26 | −28 | −4 | −27 | −36 | −29 | −51 | −39 |
R5 | −3 | −10 | −6 | −23 | −24 | −4 | −24 | −31 | −25 | −45 | −34 |
E1 | −1 | −2 | −3 | 0 | 0 | −4 | −3 | 0 | −3 | 0 | 0 |
E2 | −5 | −16 | −10 | −38 | −40 | −7 | −39 | −50 | −41 | −69 | −54 |
E3 | 1 | 1 | −1 | 3 | 2 | 0 | 0 | 2 | 0 | 2 | 5 |
E4 | −3 | −13 | −7 | −34 | −35 | −2 | −34 | −45 | −36 | −65 | −46 |
E5 | −6 | −18 | −14 | −37 | −37 | −9 | −37 | −47 | −39 | −66 | −51 |
E6 | −2 | −8 | −5 | −21 | −18 | −3 | −15 | −24 | −16 | −36 | −6 |
Nitrate transported with water out of reach (NO3_OUT) at subbasin outflow (kg N/year) | |||||||||||
Base model (kg N/year) | 27,911 | 3041 | 7321 | 215 | 4787 | 4617 | 6416 | 355 | 4928 | 124 | 154 |
StDv | 9620 | 1081 | 2715 | 86 | 1574 | 1663 | 2302 | 123 | 1788 | 45 | 64 |
SCENARIO | Change (%) in the amount of nitrate nitrogen (N-NO3−) | ||||||||||
R1 | 2 | 6 | 2 | 9 | 18 | 2 | 14 | 20 | 16 | 35 | 28 |
R2 | 0 | −1 | −1 | −2 | −4 | −1 | −3 | −5 | −4 | −8 | −7 |
R3 | −1 | −3 | −1 | −4 | −10 | −1 | −8 | −11 | −9 | −17 | −16 |
R4 | −2 | −6 | −2 | −8 | −18 | −2 | −14 | −21 | −16 | −32 | −29 |
R5 | −1 | −4 | −2 | −6 | −14 | −2 | −10 | −15 | −12 | −23 | −21 |
E1 | 0 | 0 | −1 | 0 | 0 | −1 | −1 | 0 | −1 | 0 | 0 |
E2 | −3 | −8 | −3 | −11 | −26 | −3 | −19 | −29 | −22 | −44 | −40 |
E3 | 1 | 2 | 1 | 4 | 3 | 2 | 3 | 3 | 3 | 3 | 8 |
E4 | −1 | −5 | −1 | −6 | −20 | 1 | −14 | −22 | −16 | −36 | −27 |
E5 | −2 | −7 | −3 | −9 | −22 | −2 | −16 | −25 | −18 | −38 | −33 |
E6 | −1 | −3 | −1 | −2 | −7 | −1 | 0 | −7 | 0 | −10 | 19 |
Nitrate Concentration in the Reach at Karst Springs Subbasin Outflow (mg NO3−/L) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Karst Springs Subbasin Name and No. | |||||||||||
Dobličica | Obršec | Jelševnik | Janževe Loke | Šprajcarjev Zdenec | Talački Breg | Pački Breg | Brežiček | Otovski Breg | Stobe | Planinc | |
1 | 8 | 9 | 10 | 11 | 14 | 16 | 17 | 18 | 19 | 20 | |
Average observed (ZRC SAZU) (9/2021–11/2022) | 3.3 | 10.1 | 3.6 | 4.2 | 10.3 | 10.3 | 13.6 | 10.2 | 14.3 | 12.5 | 11.1 |
_target value for the black olm habitat | 9.2 mg NO3−/L | ||||||||||
Required reduction | - | 1.1 | - | - | 1.3 | 1.3 | 4.6 | 1.2 | 5.3 | 3.5 | 2.1 |
Scenario | Potential nitrate concentration upon implementation of the scenario | ||||||||||
R1 | 3.4 | 10.7 | 3.7 | 4.6 | 12.2 | 10.5 | 15.5 | 12.2 | 16.6 | 16.9 | 14.2 |
R2 | 3.3 | 10.0 | 3.6 | 4.1 | 9.9 | 10.2 | 13.2 | 9.7 | 13.7 | 11.5 | 10.3 |
R3 | 3.3 | 9.8 | 3.6 | 4.0 | 9.3 | 10.2 | 12.5 | 9.1 | 13.0 | 10.4 | 9.3 |
R4 | 3.2 | 9.5 | 3.5 | 3.9 | 8.4 | 10.1 | 11.7 | 8.1 | 12.0 | 8.5 | 7.9 |
R5 | 3.3 | 9.7 | 3.5 | 3.9 | 8.9 | 10.1 | 12.2 | 8.7 | 12.6 | 9.6 | 8.8 |
E1 | 3.3 | 10.1 | 3.6 | 4.2 | 10.3 | 10.2 | 13.5 | 10.2 | 14.2 | 12.5 | 11.1 |
E2 | 3.2 | 9.3 | 3.5 | 3.7 | 7.6 | 10.0 | 11.0 | 7.2 | 11.2 | 7.0 | 6.7 |
E3 | 3.3 | 10.3 | 3.6 | 4.4 | 10.6 | 10.5 | 14.0 | 10.5 | 14.7 | 12.9 | 12.0 |
E4 | 3.3 | 9.6 | 3.6 | 3.9 | 8.2 | 10.4 | 11.7 | 8.0 | 12.0 | 8.0 | 8.1 |
E5 | 3.2 | 9.4 | 3.5 | 3.8 | 8.0 | 10.1 | 11.4 | 7.7 | 11.7 | 7.8 | 7.4 |
E6 | 3.3 | 9.8 | 3.6 | 4.1 | 9.6 | 10.2 | 13.6 | 9.5 | 14.3 | 11.3 | 13.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Glavan, M.; Cvejić, R. Evaluation of Agricultural Measures to Safeguard the Vulnerable Karst Groundwater Habitat of the Black Olm (Proteus anguinus parkelj) from Nitrate Pollution. Sustainability 2024, 16, 11309. https://doi.org/10.3390/su162411309
Glavan M, Cvejić R. Evaluation of Agricultural Measures to Safeguard the Vulnerable Karst Groundwater Habitat of the Black Olm (Proteus anguinus parkelj) from Nitrate Pollution. Sustainability. 2024; 16(24):11309. https://doi.org/10.3390/su162411309
Chicago/Turabian StyleGlavan, Matjaž, and Rozalija Cvejić. 2024. "Evaluation of Agricultural Measures to Safeguard the Vulnerable Karst Groundwater Habitat of the Black Olm (Proteus anguinus parkelj) from Nitrate Pollution" Sustainability 16, no. 24: 11309. https://doi.org/10.3390/su162411309
APA StyleGlavan, M., & Cvejić, R. (2024). Evaluation of Agricultural Measures to Safeguard the Vulnerable Karst Groundwater Habitat of the Black Olm (Proteus anguinus parkelj) from Nitrate Pollution. Sustainability, 16(24), 11309. https://doi.org/10.3390/su162411309