Quantum Analogs of Ostrowski-Type Inequalities for Raina’s Function correlated with Coordinated Generalized Φ-Convex Functions
Abstract
:1. Introduction
2. Preliminaries
3. A Key Lemma
4. Main Results
5. Quantum Estimates Using the Hypergeometric and Mittag–Leffler Functions
5.1. For the Hypergeometric Function
5.2. For the Mittag–Leffler Function
6. Example
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jackson, F.H. On a q-definite integrals. Quart. J. Pure Appl. Math. 1910, 4, 193–203. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum integral inequalities on finite intervals. J. Inequal. Appl. 2014, 121, 13. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 282, 282–301. [Google Scholar] [CrossRef] [Green Version]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Basel, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2003; Volume 652. [Google Scholar]
- Gauchman, H. Integral inequalities in q–calculus. Comput. Math. Appl. 2004, 47, 281–300. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Awan, M.U.; Wu, S. Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions. Mathematics 2019, 7, 751. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Latif, M.A.; Junjua, M.D.; Hussain, S.; Shahzadi, G. Some (p,q)-Estimates of Hermite–Hadamard-Type Inequalities For Co-ordinated Convex and Quasi-Convex Functions. Mathematics 2019, 8, 683. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Rashid, S.; Idrees, M.; Chu, Y.M.; Baleanu, D. Two-Variable Quantum Integral Inequalities of Simpson-Type Based on Higher-Order Generalized Strongly Preinvex and Quasi-Preinvex Functions. Symmetry 2020, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Sosnovskiy, L.A.; Sherbakov, S.S. On the Development of Mechanothermodynamics as a New Branch of Physics. Entropy 2019, 21, 1188. [Google Scholar] [CrossRef] [Green Version]
- Sosnovskiy, L.A.; Sherbakov, S.S. A model of mechanothermodynamic entropy in tribology. Entropy 2017, 19, 115. [Google Scholar] [CrossRef]
- Sherbakov, S.S.; Zhuravkov, M.A. Interaction of several bodies as applied to solving tribo-fatigue problems. Acta Mech. 2013, 224, 1541–1553. [Google Scholar] [CrossRef]
- Sherbakov, S.S.; Zhuravkov, M.A.; Sosnovskiy, L.A. Contact interaction, volume damageability and multicriteria limiting states of multielement tribo-fatigue systems. In Selected Problems on Experimental Mathematics; Wydawnictwo Politechniki Slaskiej: Gliwice, Poland, 2017; pp. 17–38. [Google Scholar]
- Shcherbakov, S.S. Spatial stress-strain state of tribofatigue system in roll–shaft contact zone. Strength Mater. 2013, 45, 35–43. [Google Scholar] [CrossRef]
- Rashid, S.; Jarad, F.; Noor, M.A.; Kalsoom, H.; Chu, Y.M. Inequalities by means of generalized proportional fractional integral operators with respect to another function. Mathematics 2019, 7, 1225. [Google Scholar] [CrossRef] [Green Version]
- Rafeeq, S.; Kalsoom, K.; Hussain, S.; Rashid, S.; Chu, Y.M. Delay dynamic double integral inequalities on time scales with applications. Adv. Differ. Equ. 2020, 1, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Kalsoom, H.; Hammouch, Z.; Ashraf, R.; Baleanu, D.; Chu, Y.M. New Multi-Parametrized Estimates Having pth-Order Differentiability in Fractional Calculus for Predominating ℏ-Convex Functions in Hilbert Space. Symmetry 2020, 12, 222. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Agarwal, R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to Trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Kirmaci, U.S.; Ozdemir, M.E. On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 153, 361–368. [Google Scholar] [CrossRef]
- Zafar, F.; Kalsoom, H.; Hussain, N. Some inequalities of Hermite-Hadamard type for n-times differentiable (ρ,m)-geometrically convex functions. J. Nonlinear Sci. Appl. 2015, 8, 201–217. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Hussain, S. Some Hermite-Hadamard type integral inequalities whose n-times differentiable functions are s-logarithmically convex functions. Punjab Univ. J. Math. 2019, 2019, 65–75. [Google Scholar]
- Deng, Y.; Kalsoom, H.; Wu, S. Some New Quantum Hermite-Hadamard-Type Estimates Within a Class of Generalized (s,m)-Preinvex Functions. Symmetry 2019, 11, 1283. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Hussain, S.; Rashid, S. Hermite-Hadamard Type Integral Inequalities for Functions Whose Mixed Partial Derivatives Are Co-ordinated Preinvex. Punjab Univ. J. Math. 2020, 52, 63–76. [Google Scholar]
- Doming, N.; Rashid, S.; Akdemir, A.O.; Baleanue, D.; Liu, J.-B. On some new weighted inequalities for differentiable exponentially convex and exponentially quasi-convex functions with applications. Mathematics 2019, 7, 727. [Google Scholar]
- Rashid, S.; Abdeljawed, T.; Jarad, F.; Noor, M.A. Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications. Mathematics 2019, 7, 807. [Google Scholar] [CrossRef] [Green Version]
- Rashid, S.; Noor, M.A.; Noor, K.I.; Safdar, F.; Chu, Y.-M. Hermite-Hadamard inequalities for the class of convex functions on time scale. Mathematics 2019, 7, 956. [Google Scholar] [CrossRef] [Green Version]
- Barnett, N.S.; Dragomir, S.S. An Ostrowski-type inequality for double integrals and applications for cubature formulae. Soochow J. Math. 2001, 27, 109–114. [Google Scholar]
- Cerone, P.; Dragomir, S.S. Ostrowski-type inequalities for functions whose derivatives satisfy certain convexity assumptions. Demonstratio Math. 2004, 37, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Latif, M.A.; Dragomir, S.S.; Matouk, A.E. New inequalites of Ostrowski-type for co-ordinated s-convex functions via fractional integrals. J. Fractional. Calc. Appl. 2013, 4, 22–36. [Google Scholar]
- Latif, M.A.; Dragomir, S.S. New Ostrowski-type inequalites for co-ordinated s-convex functions in the second sense. Le Matematiche 2012, LXVII, 57–72. [Google Scholar]
- Ostrowski, A.M. Über die absolutabweichung einer differentiebaren funktion von ihrem in- tegralmitelwert, Comment. Math. Helv. 1938, 10, 226–227. [Google Scholar] [CrossRef]
- Latif, M.A.; Hussain, S.; Dragomir, S.S. New Ostrowski-type inequalities for co-ordinated convex functions. TJMM 2012, 4, 125–136. [Google Scholar]
- Noor, M.A.; Awan, M.U.; Noor, I.K. Quantum Ostrowski inequalities for q–differentiable convex functions. J. Math. Inequal. 2016, 10, 1013–1018. [Google Scholar] [CrossRef]
- Kalsoom, H.; Wu, J.; Hussain, S.; Latif, M.A. Simpson’s type inequalities for co-ordinated convex functions on quantum calculus. Symmetry 2019, 11, 768. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.P.; Qi, F.; Wang, S.H. Some new integral inequalities of Hermite-Hadamard type for (α, m, P)-convex functions on co-ordinates. J. Appl. Anal. Comput. 2016, 6, 171–178. [Google Scholar]
- Latif, M.A.; Alomari, M. Hadamard-type inequalities for product two convex functions on the co-ordinates. Int. Math. 2009, 4, 2327–2338. [Google Scholar]
- Matloka, M. On some Hadamard-type inequalities for (h1,h2)-preinvex functions on the co-ordinates. J. Inequal. Appl. 2013, 227. [Google Scholar]
- Özdemir, M.E.; Akdemir, A.O.; Tunc, M. On some Hadamard-type inequalities for co-ordinated convex functions. arXiv 2012, arXiv:1203.4327. [Google Scholar]
- Xi, B.Y.; Qi, F. Some new integral inequalities of Hermite-Hadamard type for (log,(α, m))-convex functions on co-ordinates. Stud. Univ. Babeş-Bolyai Math. 2015, 60, 509–525. [Google Scholar]
- Dragomir, S.S. On Hadamard’s inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwan. J. Math. 2001, 4, 775–788. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Vivas-Cortez, M.J.; Kashuri, A.; Liko, R.; Hernández Hernández, J.E. Quantum Estimates of Ostrowski Inequalities for Generalized ϕ-Convex Functions. Symmetry 2019, 12, 1513. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.-H.; Kalsoom, H.; Rashid, S.; Idrees, M.; Safdar, F.; Chu, Y.-M.; Baleanu, D. Quantum Analogs of Ostrowski-Type Inequalities for Raina’s Function correlated with Coordinated Generalized Φ-Convex Functions. Symmetry 2020, 12, 308. https://doi.org/10.3390/sym12020308
Chu H-H, Kalsoom H, Rashid S, Idrees M, Safdar F, Chu Y-M, Baleanu D. Quantum Analogs of Ostrowski-Type Inequalities for Raina’s Function correlated with Coordinated Generalized Φ-Convex Functions. Symmetry. 2020; 12(2):308. https://doi.org/10.3390/sym12020308
Chicago/Turabian StyleChu, Hong-Hu, Humaira Kalsoom, Saima Rashid, Muhammad Idrees, Farhat Safdar, Yu-Ming Chu, and Dumitru Baleanu. 2020. "Quantum Analogs of Ostrowski-Type Inequalities for Raina’s Function correlated with Coordinated Generalized Φ-Convex Functions" Symmetry 12, no. 2: 308. https://doi.org/10.3390/sym12020308
APA StyleChu, H.-H., Kalsoom, H., Rashid, S., Idrees, M., Safdar, F., Chu, Y.-M., & Baleanu, D. (2020). Quantum Analogs of Ostrowski-Type Inequalities for Raina’s Function correlated with Coordinated Generalized Φ-Convex Functions. Symmetry, 12(2), 308. https://doi.org/10.3390/sym12020308