Deep Learning Evidence for Global Optimality of Gerver’s Sofa
Abstract
:1. Introduction
2. Problem Definition and Formulations
2.1. Sofa Formation
2.2. Differentiable Area Calculation
2.3. Kallus–Romik Upper Bound
- given an integer , let , ; [6] [Theorem 5] asserts that
- Their algorithm does not yield but instead provides another upper bound whose tightness is unproven; though this computed one is also an upper bound of , there can be space for improving the tightness if is evaluated directly.
- Based on rational programming, their algorithm is computationally expensive and unscalable, which can only tackle a small number of angles. Consequently, Equation (11) or their Theorem 5 remains unexploited for constraining the actual value of .
3. Deep Learning Methodology
3.1. Fully Connected Networks
3.2. Network Parameterization of Corridor Movement
3.3. Physics-Informed Architecture
4. Results
4.1. Physics-Informed Area Optimization
4.2. Kallus–Romik Upper Bound with Many Angles
4.3. Kallus–Romik Upper Bound with Five Angles
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Fully Connected Networks
Appendix A.1. Architecture
Appendix A.2. Universal Approximation
Appendix A.3. Invexity
References
- Moser, L. Problem 66-11, Moving furniture through a hallway. SIAM Rev. 1966, 8, 381. [Google Scholar] [CrossRef]
- Hammersley, J.M. On the enfeeblement of mathematical skills by modern mathematics and by similar soft intellectual trash in schools and universities. Educ. Stud. Math. 1968, 1, 17. [Google Scholar] [CrossRef]
- Gerver, J.L. On moving a sofa around a corner. Geom. Dedicata 1992, 42, 267–283. [Google Scholar] [CrossRef]
- Romik, D. Differential equations and exact solutions in the moving sofa problem. Exp. Math. 2018, 27, 316–330. [Google Scholar] [CrossRef]
- Batsch, M. A numerical approach for analysing the moving sofa problem. Symmetry 2022, 14, 1409. [Google Scholar] [CrossRef]
- Kallus, Y.; Romik, D. Improved upper bounds in the moving sofa problem. Adv. Math. 2018, 340, 960–982. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NE, USA, 3–6 December 2012; Curran Associates, Inc.: New York, NY, USA, 2012; Volume 25, pp. 1097–1105. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; Curran Associates, Inc.: New York, NY, USA, 2017; Volume 30, pp. 5998–6008. [Google Scholar]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A guide to deep learning in healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Chen, Y.; Weng, Q.; Tang, L.; Wang, L.; Xing, H.; Liu, Q. Developing an intelligent cloud attention network to support global urban green spaces mapping. ISPRS J. Photogramm. Remote Sens. 2023, 198, 197–209. [Google Scholar] [CrossRef]
- Fawzi, A.; Balog, M.; Huang, A.; Hubert, T.; Romera-Paredes, B.; Barekatain, M.; Novikov, A.; R Ruiz, F.J.; Schrittwieser, J.; Swirszcz, G.; et al. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature 2022, 610, 47–53. [Google Scholar] [CrossRef]
- Romera-Paredes, B.; Barekatain, M.; Novikov, A.; Balog, M.; Kumar, M.P.; Dupont, E.; Ruiz, F.J.; Ellenberg, J.S.; Wang, P.; Fawzi, O.; et al. Mathematical discoveries from program search with large language models. Nature 2024, 625, 468–475. [Google Scholar] [CrossRef]
- Gukov, S.; Halverson, J.; Manolescu, C.; Ruehle, F. Searching for ribbons with machine learning. arXiv 2023, arXiv:2304.09304. [Google Scholar]
- Dissanayake, M.; Phan-Thien, N. Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 1994, 10, 195–201. [Google Scholar] [CrossRef]
- Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 1998, 9, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Karniadakis, G.E.; Kevrekidis, I.G.; Lu, L.; Perdikaris, P.; Wang, S.; Yang, L. Physics-informed machine learning. Nat. Rev. Phys. 2021, 3, 422–440. [Google Scholar] [CrossRef]
- Pinilla, S.; Thiyagalingam, J. Global Optimality for Non-linear Constrained Restoration Problems via Invexity. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Pinilla, S.; Mu, T.; Bourne, N.; Thiyagalingam, J. Improved imaging by invex regularizers with global optima guarantees. Adv. Neural Inf. Process. Syst. 2022, 35, 10780–10794. [Google Scholar]
- Esporesto. Moving Sofa. Online Math Tools, GeoGebra. 2016. Available online: https://www.geogebra.org/m/vemEtGyj (accessed on 15 May 2016).
- Vincent, L.; Soille, P. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 583–598. [Google Scholar] [CrossRef]
- De Bock, J.; De Smet, P.; Philips, W. A fast sequential rainfalling watershed segmentation algorithm. In Proceedings of the Advanced Concepts for Intelligent Vision Systems: 7th International Conference, ACIVS 2005, Antwerp, Belgium, 20–23 September 2005; Proceedings 7. Springer: Berlin/Heidelberg, Germany, 2005; pp. 476–482. [Google Scholar]
- Park, J.; Sandberg, I.W. Universal approximation using radial-basis-function networks. Neural Comput. 1991, 3, 246–257. [Google Scholar] [CrossRef]
- Lu, L.; Jin, P.; Pang, G.; Zhang, Z.; Karniadakis, G.E. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 2021, 3, 218–229. [Google Scholar] [CrossRef]
- Tao, Q.; Li, L.; Huang, X.; Xi, X.; Wang, S.; Suykens, J.A. Piecewise linear neural networks and deep learning. Nat. Rev. Methods Prim. 2022, 2, 42. [Google Scholar] [CrossRef]
- Leng, K.; Thiyagalingam, J. On the compatibility between neural networks and partial differential equations for physics-informed learning. arXiv 2022, arXiv:2212.00270. [Google Scholar]
- Mishra, S.K.; Giorgi, G. Invexity and Optimization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008; Volume 88. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the ICLR, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Post, J.V. Sequence A128463 in the On-Line Encyclopedia of Integer Sequences. 2007. Available online: https://oeis.org/A128463 (accessed on 5 May 2007).
- Liu, D.C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503–528. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Taylor, G.; Studer, C.; Goldstein, T. Visualizing the loss landscape of neural nets. Adv. Neural Inf. Process. Syst. 2018, 31, 6391–6401. [Google Scholar]
- Böttcher, L.; Wheeler, G. Visualizing high-dimensional loss landscapes with Hessian directions. J. Stat. Mech. Theory Exp. 2024, 2024, 023401. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Netw. 1991, 4, 251–257. [Google Scholar] [CrossRef]
- Maiorov, V.; Pinkus, A. Lower bounds for approximation by MLP neural networks. Neurocomputing 1999, 25, 81–91. [Google Scholar] [CrossRef]
- Lu, Z.; Pu, H.; Wang, F.; Hu, Z.; Wang, L. The expressive power of neural networks: A view from the width. Adv. Neural Inf. Process. Syst. 2017, 30, 6232–6240. [Google Scholar]
- Hanson, M.A. On sufficiency of the kuhn-tucker conditions. J. Math. Anal. Appl. 1981, 80, 545–550. [Google Scholar] [CrossRef]
- Craven, B.D.; Glover, B.M. Invex functions and duality. J. Aust. Math. Soc. 1985, 39, 1–20. [Google Scholar] [CrossRef]
- Barik, A.; Honorio, J. Fair sparse regression with clustering: An invex relaxation for a combinatorial problem. Adv. Neural Inf. Process. Syst. 2021, 34, 23245–23257. [Google Scholar]
- Syed, M.; Pardalos, P.; Principe, J. Invexity of the minimum error entropy criterion. IEEE Signal Process. Lett. 2013, 20, 1159–1162. [Google Scholar] [CrossRef]
- Chen, B.; Xing, L.; Zhao, H.; Zheng, N.; Prı, J.C. Generalized correntropy for robust adaptive filtering. IEEE Trans. Signal Process. 2016, 64, 3376–3387. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leng, K.; Bi, J.; Cha, J.; Pinilla, S.; Thiyagalingam, J. Deep Learning Evidence for Global Optimality of Gerver’s Sofa. Symmetry 2024, 16, 1388. https://doi.org/10.3390/sym16101388
Leng K, Bi J, Cha J, Pinilla S, Thiyagalingam J. Deep Learning Evidence for Global Optimality of Gerver’s Sofa. Symmetry. 2024; 16(10):1388. https://doi.org/10.3390/sym16101388
Chicago/Turabian StyleLeng, Kuangdai, Jia Bi, Jaehoon Cha, Samuel Pinilla, and Jeyan Thiyagalingam. 2024. "Deep Learning Evidence for Global Optimality of Gerver’s Sofa" Symmetry 16, no. 10: 1388. https://doi.org/10.3390/sym16101388
APA StyleLeng, K., Bi, J., Cha, J., Pinilla, S., & Thiyagalingam, J. (2024). Deep Learning Evidence for Global Optimality of Gerver’s Sofa. Symmetry, 16(10), 1388. https://doi.org/10.3390/sym16101388