Unraveling the Subsurface Damage and Material Removal Mechanism of Multi-Principal-Element Alloy FeCrNi Coatings During the Scratching Process
Abstract
:1. Introduction
2. Methods
2.1. Experiment
2.2. Molecular Dynamics Simulation
3. Results and Discussions
3.1. Influence of Scratching Speed
3.2. Effect of Scratching Depth
3.3. Role of Operating Temperature
3.4. Experimental Verification
3.4.1. Phase Constitution and Microstructure
3.4.2. Tribological Performance
4. Conclusions
- (1)
- The results reveal that the high scratching speed leads to larger scratching force because more atomic bonds have to be broken at the same time. The high scratching depth causes an increase in the friction coefficient due to the larger resistance to tool movement. The thermal softening results in a slightly increased tangential force at high speed, and strong strain rate hardening induces an increase in normal force. This trend reduces the friction coefficient. The friction coefficient decreases with the increase in scratch speed, and increases with the increase of scratch depth.
- (2)
- The effect of temperature on the tribological behavior of MPEA, the quantitative relationship between friction coefficient and temperature, and the mechanism of oxidation behavior on friction coefficient and atomic adhesion is investigated. The friction coefficient monotonously decreases with the increasing test temperatures. High Cr content results in the formation of a compact oxide layer at intermediate temperatures to improve tribological performance due to the oxidative delamination wear. The experiment shows that the oxide layer with low shear strength and high hardness prevents direct contact between friction pairs, reduces the wear, and improves the wear performance. These findings give an atomistic insight into scratching-induced damage mechanisms, and beneficially develop new MPEA coatings with superior wear performance.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, Q.; Yang, M.; Feng, R.; Chuang, A.C.; An, K.; Liaw, P.K.; Wu, X.; Tao, N.; Lu, L. Atomic faulting induced exceptional cryogenic strain hardening in gradient cell–structured alloy. Science 2023, 382, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chen, T.; Tan, L.; Poplawsky, J.D.; An, K.; Wang, Y.; George, E.P. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 2021, 595, 245–249. [Google Scholar] [CrossRef]
- Krishna, S.A.; Noble, N.; Radhika, N.; Saleh, B. A comprehensive review on advances in high entropy alloys: Fabrication and surface modification methods, properties, applications, and future prospects. J. Manuf. Process. 2024, 109, 583–606. [Google Scholar] [CrossRef]
- Zhang, P.; Li, Z.; Liu, H.; Zhang, Y.; Li, H.; Shi, C.; Liu, P. Recent progress on the microstructure and properties of high entropy alloy coatings prepared by laser processing technology: A review. J. Manuf. Process. 2022, 76, 397–411. [Google Scholar] [CrossRef]
- Peng, J.; Xie, B.; Zeng, X.; Fang, Q.; Liu, B.; Liaw, P.K.; Li, J. Vacancy dependent mechanical behaviors of high-entropy alloy. Int. J. Mech. Sci. 2022, 218, 107065. [Google Scholar] [CrossRef]
- Li, J.; Fu, X.; Feng, H.; Liu, B.; Liaw, P.K.; Fang, Q. Evaluating the solid solution, local chemical ordering, and precipitation strengthening contributions in multi-principal-element alloys. J. Alloys Compd. 2023, 938, 168521. [Google Scholar] [CrossRef]
- Schneider, M.; Laplanche, G. Effects of temperature on mechanical properties and deformation mechanisms of the equiatomic CrFeNi medium-entropy alloy. Acta Mater. 2021, 204, 116470. [Google Scholar] [CrossRef]
- Fu, A.; Liu, B.; Lu, W.; Liu, B.; Li, J. A novel supersaturated medium entropy alloy with superior tensile properties and corrosion resistance. Scr. Mater. 2020, 186, 381–386. [Google Scholar] [CrossRef]
- Duan, H.; Liu, B.; Fu, A.; Liu, Y. Segregation enabled outstanding combination of mechanical and corrosion properties in a FeCrNi medium entropy alloy manufactured by selective laser melting. J. Mater. Sci. Tech. 2022, 99, 207–214. [Google Scholar] [CrossRef]
- Tang, L.; Jiang, F.Q.; Wróbel, J.S.; Liu, B.; Kabra, S.; Duan, R.X.; Cai, B. In situ neutron diffraction unravels deformation mechanisms of a strong and ductile FeCrNi medium entropy alloy. J. Mater. Sci. Tech. 2022, 116, 103–120. [Google Scholar] [CrossRef]
- Fu, A.; Liu, B.; Cao, Y.; Wang, J.; Liao, T.; Liu, Y. A novel cobalt-free oxide dispersion strengthened medium-entropy alloy with outstanding mechanical properties and irradiation resistance. J. Mater. Sci. Tech. 2023, 152, 190–200. [Google Scholar] [CrossRef]
- Fan, P.; Katiyar, N.K.; Goel, S.; He, Y.; Geng, Y.; Yan, Y. Oblique nanomachining of gallium arsenide explained using AFM experiments and MD simulations. J. Manuf. Process. 2023, 90, 125–138. [Google Scholar] [CrossRef]
- Yang, L.Y.; Wu, C.Y.; Peng, D.K.; Shen, Y.J.; Fan, J.L.; Gong, H.R. Effect of Cu on strain-stress relationship of W bicrystal models with grain boundary from molecular dynamics simulation. Vacuum 2023, 208, 111712. [Google Scholar] [CrossRef]
- Sato, Y.; Shinzato, S.; Ohmura, T.; Hatano, T.; Ogata, S. Unique universal scaling in nanoindentation pop-ins. Nat. Commun. 2020, 11, 4177. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, S.; Dong, L.; Zhang, J.; Zheng, Z.; Liu, J. Effect of crystal orientation on the nanoindentation deformation behavior of TiN coating based on molecular dynamics. Surf. Coat. Technol. 2023, 467, 129721. [Google Scholar] [CrossRef]
- Yin, Z.; Zhu, P.; Li, B. Study of nanoscale wear of SiC/Al nanocomposites using molecular dynamics simulations. Tribolo. Lett. 2021, 69, 1–17. [Google Scholar] [CrossRef]
- Zhou, A.; Liu, X.B.; Wang, Q.; Zhang, S.Y.; Meng, Y. Investigation of nano-tribological behaviors and deformation mechanisms of Cu-Ni alloy by molecular dynamics simulation. Tribo. Int. 2023, 180, 108258. [Google Scholar] [CrossRef]
- Li, J.; Dong, L.; Dong, X.; Zhao, W.; Liu, J.; Xiong, J. Study on wear behavior of FeNiCrCoCu high entropy alloy coating on Cu substrate based on molecular dynamics. Appl. Sur. Sci. 2021, 570, 151236. [Google Scholar] [CrossRef]
- Yang, C.M.; Liu, X.B.; Zhu, Z.X.; Zhou, A.; Zhou, H.B.; Zhang, S.H. Study of tribological property of laser-cladded FeCoCrNiMnx high-entropy alloy coatings via experiment and molecular dynamics simulation. Tribol. Int. 2024, 191, 109106. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, G.; Li, W.; Li, S.; Yan, Y.; Liu, X.; Gao, L. Grain size and scratching depth dependent tribological characteristics of CrCoNi medium-entropy alloy coatings: A molecular dynamics simulation study. Surf. Coat. Technol. 2023, 468, 129772. [Google Scholar] [CrossRef]
- Nguyen, H.G.; Fang, T.H.; Doan, D.Q. Cyclic plasticity and deformation mechanism of AlCrCuFeNi high entropy alloy. J. Alloys Compd. 2023, 940, 168838. [Google Scholar] [CrossRef]
- Doan, D.Q.; Nguyen, V.H.; Tran, T.V.; Hoang, M.T. Atomic-scale analysis of mechanical and wear characteristics of AlCoCrFeNi high entropy alloy coating on Ni substrate. J. Manuf. Process. 2023, 85, 1010–1023. [Google Scholar] [CrossRef]
- Feng, H.; Cui, S.; Chen, H.; Song, X.; Fang, Q.; Li, J. A molecular dynamics investigation into deformation mechanism of nanotwinned Cu/high entropy alloy FeCoCrNi nanolaminates. Surf. Coat. Technol. 2020, 401, 126325. [Google Scholar] [CrossRef]
- Gao, S.; Wang, H.; Huang, H.; Kang, R. Molecular simulation of the plastic deformation and crack formation in single grit grinding of 4H-SiC single crystal. Int. J. Mech. Sci. 2023, 247, 108147. [Google Scholar] [CrossRef]
- Wu, Z.; Dong, B.; Peng, G.; Luo, W.; Shan, X.; Nie, L. Novel insight into the self-lubricating mechanism of Cu–Pb bearing alloy during sliding friction with the guidance of molecular dynamics. J. Mater. Res. Technol. 2023, 24, 3157–3163. [Google Scholar] [CrossRef]
- Seki, T.; Futazuka, T.; Morishige, N.; Matsubara, R.; Ikuhara, Y.; Shibata, N. Incommensurate grain-boundary atomic structure. Nat. Commun. 2023, 14, 7806. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Qiu, Y.; Qi, Y.; Zheng, H.; He, T.; Feng, M. Atomistic simulation of nanoindentation response of dual-phase nanocrystalline CoCrFeMnNi high-entropy alloy. J. Appl. Phys. 2021, 130, 12. [Google Scholar] [CrossRef]
- Lee, S.; Vaid, A.; Im, J.; Kim, B.; Prakash, A.; Guénolé, J.; Oh, S.H. In-situ observation of the initiation of plasticity by nucleation of prismatic dislocation loops. Nat. Commun. 2020, 11, 2367. [Google Scholar] [CrossRef]
- Sato, Y.; Shinzato, S.; Ohmura, T.; Ogata, S. Atomistic prediction of the temperature-and loading-rate-dependent first pop-in load in nanoindentation. Int. J. Plast. 2019, 121, 280–292. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 085007. [Google Scholar] [CrossRef]
- Stukowski, A.; Albe, K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 2010, 18, 085001. [Google Scholar] [CrossRef]
- Farkas, D.; Caro, A. Model interatomic potentials for Fe–Ni–Cr–Co–Al high-entropy alloys. J. Mater. Res. 2020, 35, 3031–3040. [Google Scholar] [CrossRef]
- Tan, F.; Li, J.; Feng, H.; Fang, Q.; Jiang, C.; Liu, Y.; Liaw, P.K. Entropy-induced transition on grain-boundary migration in multi-principal element alloys. Scr. Mater. 2021, 194, 113668. [Google Scholar] [CrossRef]
- Lu, Y.S.; Chang, M.P.; Fang, T.H. Phase transformation and microstructure evolution of nanoimprinted NiCoCr medium entropy alloys. J. Alloys Compd. 2022, 892, 162138. [Google Scholar] [CrossRef]
- Hao, Z.P.; Cui, R.R.; Fan, Y.H.; Lin, J.Q. Diffusion mechanism of tools and simulation in nanoscale cutting the Ni–Fe–Cr series of Nickel-based superalloy. Int. J. Mech. Sci. 2019, 150, 625–636. [Google Scholar] [CrossRef]
- Doan, D.Q.; Fang, T.H.; Chen, T.H. Influences of grain size and temperature on tribological characteristics of CuAlNi alloys under nanoindentation and nanoscratch. Int. J. Mech. Sci. 2020, 185, 105865. [Google Scholar] [CrossRef]
- Stephan, S.; Schmitt, S.; Hasse, H.; Urbassek, H.M. Molecular dynamics simulation of the stribeck curve: Boundary lubrication, mixed lubrication, and hydrodynamic lubrication on the atomistic level. Friction 2023, 11, 2342–2366. [Google Scholar] [CrossRef]
- Li, J.; Liu, B.; Luo, H.; Fang, Q.; Liu, Y.; Liu, Y. A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Comput. Mater. Sci. 2016, 118, 66–76. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Sneddon, I.N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 1965, 3, 47–57. [Google Scholar] [CrossRef]
- Geng, Y.; Chen, J.; Tan, H.; Cheng, J.; Zhu, S.; Yang, J. Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range. Tribol. Int. 2021, 157, 106912. [Google Scholar] [CrossRef]
- Du, L.M.; Lan, L.W.; Zhu, S.; Yang, H.J.; Shi, X.H.; Liaw, P.K.; Qiao, J.W. Effects of temperature on the tribological behavior of Al0. 25CoCrFeNi high-entropy alloy. J. Mater. Sci. Technol. 2019, 35, 917–925. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Yang, H.; Zhang, M.; Ma, S.; Qiao, J. Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy. Mater. Chem. Phys. 2018, 210, 233–239. [Google Scholar] [CrossRef]
- Gåård, A.; Krakhmalev, P.; Bergström, J.; Grytzelius, J.H.; Zhang, H.M. Experimental study of the relationship between temperature and adhesive forces for low-alloyed steel, stainless steel, and titanium using atomic force microscopy in ultrahigh vacuum. J. Appl. Phys. 2008, 103, 12. [Google Scholar] [CrossRef]
- Joseph, J.; Haghdadi, N.; Annasamy, M.; Kada, S.; Hodgson, P.D.; Barnett, M.R.; Fabijanic, D.M. On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature. Scr. Mater. 2020, 186, 230–235. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, Y.; Li, J. Investigation on tribological behavior of advanced high strength steels: Influence of hot stamping process parameters. Trib. Lett. 2012, 45, 489–495. [Google Scholar] [CrossRef]
Material | FeCrNi Coating | Ni Substrate | Tool |
---|---|---|---|
Dimension | 388 Å × 180 Å × 36 Å | 388 Å × 180 Å × 144 Å | Radius 40 Å |
Atom count | 229,986 | 875,964 | 47,262 |
Time step | 1 fs | ||
Initial temperature | 300 K, 500 K, 700 K, 900 K, and 1100 K | ||
Cutting depth | 0.5 nm, 1.0 nm, 1.5 nm, and 2 nm | ||
Scratching velocity | 25 m/s, 50 m/s, 100 m/s, and 200 m/s | ||
Scratching distance | 35 nm | ||
Scratching direction | [100] direction on (1 0 0) surface |
Parameter | D (eV) | ||
---|---|---|---|
C-Fe | 1.0057 | 1.9718 | 2.6493 |
C-Cr | 1.0342 | 2.0636 | 2.6176 |
C-Ni | 1.0039 | 1.9875 | 2.6199 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Liu, X.; Fu, A.; Peng, J. Unraveling the Subsurface Damage and Material Removal Mechanism of Multi-Principal-Element Alloy FeCrNi Coatings During the Scratching Process. Symmetry 2024, 16, 1391. https://doi.org/10.3390/sym16101391
Chen Y, Liu X, Fu A, Peng J. Unraveling the Subsurface Damage and Material Removal Mechanism of Multi-Principal-Element Alloy FeCrNi Coatings During the Scratching Process. Symmetry. 2024; 16(10):1391. https://doi.org/10.3390/sym16101391
Chicago/Turabian StyleChen, Yuan, Xiubo Liu, Ao Fu, and Jing Peng. 2024. "Unraveling the Subsurface Damage and Material Removal Mechanism of Multi-Principal-Element Alloy FeCrNi Coatings During the Scratching Process" Symmetry 16, no. 10: 1391. https://doi.org/10.3390/sym16101391
APA StyleChen, Y., Liu, X., Fu, A., & Peng, J. (2024). Unraveling the Subsurface Damage and Material Removal Mechanism of Multi-Principal-Element Alloy FeCrNi Coatings During the Scratching Process. Symmetry, 16(10), 1391. https://doi.org/10.3390/sym16101391