Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Mar 2024]
Title:Neural Radiance Field-based Visual Rendering: A Comprehensive Review
View PDF HTML (experimental)Abstract:In recent years, Neural Radiance Fields (NeRF) has made remarkable progress in the field of computer vision and graphics, providing strong technical support for solving key tasks including 3D scene understanding, new perspective synthesis, human body reconstruction, robotics, and so on, the attention of academics to this research result is growing. As a revolutionary neural implicit field representation, NeRF has caused a continuous research boom in the academic community. Therefore, the purpose of this review is to provide an in-depth analysis of the research literature on NeRF within the past two years, to provide a comprehensive academic perspective for budding researchers. In this paper, the core architecture of NeRF is first elaborated in detail, followed by a discussion of various improvement strategies for NeRF, and case studies of NeRF in diverse application scenarios, demonstrating its practical utility in different domains. In terms of datasets and evaluation metrics, This paper details the key resources needed for NeRF model training. Finally, this paper provides a prospective discussion on the future development trends and potential challenges of NeRF, aiming to provide research inspiration for researchers in the field and to promote the further development of related technologies.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.