Computer Science > Cryptography and Security
[Submitted on 13 May 2022]
Title:Privacy Preserving Release of Mobile Sensor Data
View PDFAbstract:Sensors embedded in mobile smart devices can monitor users' activity with high accuracy to provide a variety of services to end-users ranging from precise geolocation, health monitoring, and handwritten word recognition. However, this involves the risk of accessing and potentially disclosing sensitive information of individuals to the apps that may lead to privacy breaches. In this paper, we aim to minimize privacy leakages that may lead to user identification on mobile devices through user tracking and distinguishability while preserving the functionality of apps and services. We propose a privacy-preserving mechanism that effectively handles the sensor data fluctuations (e.g., inconsistent sensor readings while walking, sitting, and running at different times) by formulating the data as time-series modeling and forecasting. The proposed mechanism also uses the notion of correlated noise-series against noise filtering attacks from an adversary, which aims to filter out the noise from the perturbed data to re-identify the original data. Unlike existing solutions, our mechanism keeps running in isolation without the interaction of a user or a service provider. We perform rigorous experiments on benchmark datasets and show that our proposed mechanism limits user tracking and distinguishability threats to a significant extent compared to the original data while maintaining a reasonable level of utility of functionalities. In general, we show that our obfuscation mechanism reduces the user trackability threat by 60\% across all the datasets while maintaining the utility loss below 0.5 Mean Absolute Error (MAE). We also observe that our mechanism is more effective in large datasets. For example, with the Swipes dataset, the distinguishability risk is reduced by 60\% on average while the utility loss is below 0.5 MAE.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.