Computer Science > Computation and Language
[Submitted on 24 Aug 2023 (v1), last revised 27 Mar 2024 (this version, v2)]
Title:CARE: Co-Attention Network for Joint Entity and Relation Extraction
View PDF HTML (experimental)Abstract:Joint entity and relation extraction is the fundamental task of information extraction, consisting of two subtasks: named entity recognition and relation extraction. However, most existing joint extraction methods suffer from issues of feature confusion or inadequate interaction between the two subtasks. Addressing these challenges, in this work, we propose a Co-Attention network for joint entity and Relation Extraction (CARE). Our approach includes adopting a parallel encoding strategy to learn separate representations for each subtask, aiming to avoid feature overlap or confusion. At the core of our approach is the co-attention module that captures two-way interaction between the two subtasks, allowing the model to leverage entity information for relation prediction and vice versa, thus promoting mutual enhancement. Through extensive experiments on three benchmark datasets for joint entity and relation extraction (NYT, WebNLG, and SciERC), we demonstrate that our proposed model outperforms existing baseline models. Our code will be available at this https URL.
Submission history
From: Wenjun Kong [view email][v1] Thu, 24 Aug 2023 03:40:54 UTC (231 KB)
[v2] Wed, 27 Mar 2024 13:46:37 UTC (193 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.