Computer Science > Information Theory
[Submitted on 3 Mar 2024]
Title:Multi-objective Optimization for Data Collection in UAV-assisted Agricultural IoT
View PDF HTML (experimental)Abstract:The ground fixed base stations (BSs) are often deployed inflexibly, and have high overheads, as well as are susceptible to the damage from natural disasters, making it impractical for them to continuously collect data from sensor devices. To improve the network coverage and performance of wireless communication, unmanned aerial vehicles (UAVs) have been introduced in diverse wireless networks, therefore in this work we consider employing a UAV as an aerial BS to acquire data of agricultural Internet of Things (IoT) devices. To this end, we first formulate a UAV-assisted data collection multi-objective optimization problem (UDCMOP) to efficiently collect the data from agricultural sensing devices. Specifically, we aim to collaboratively optimize the hovering positions of UAV, visit sequence of UAV, speed of UAV, in addition to the transmit power of devices, to simultaneously achieve the maximization of minimum transmit rate of devices, the minimization of total energy consumption of devices, and the minimization of total energy consumption of UAV. Second, the proposed UDCMOP is a non-convex mixed integer nonlinear optimization problem, which indicates that it includes continuous and discrete solutions, making it intractable to be solved. Therefore, we solve it by proposing an improved multi-objective artificial hummingbird algorithm (IMOAHA) with several specific improvement factors, that are the hybrid initialization operator, Cauchy mutation foraging operator, in addition to the discrete mutation operator. Finally, simulations are carried out to testify that the proposed IMOAHA can effectively improve the system performance comparing to other benchmarks.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.