Computer Science > Software Engineering
[Submitted on 1 Apr 2024 (v1), last revised 11 May 2024 (this version, v2)]
Title:Exploring and Evaluating Hallucinations in LLM-Powered Code Generation
View PDF HTML (experimental)Abstract:The rise of Large Language Models (LLMs) has significantly advanced many applications on software engineering tasks, particularly in code generation. Despite the promising performance, LLMs are prone to generate hallucinations, which means LLMs might produce outputs that deviate from users' intent, exhibit internal inconsistencies, or misalign with the factual knowledge, making the deployment of LLMs potentially risky in a wide range of applications. Existing work mainly focuses on investing the hallucination in the domain of natural language generation (NLG), leaving a gap in understanding the types and extent of hallucinations in the context of code generation. To bridge the gap, we conducted a thematic analysis of the LLM-generated code to summarize and categorize the hallucinations present in it. Our study established a comprehensive taxonomy of hallucinations in LLM-generated code, encompassing 5 primary categories of hallucinations depending on the conflicting objectives and varying degrees of deviation observed in code generation. Furthermore, we systematically analyzed the distribution of hallucinations, exploring variations among different LLMs and their correlation with code correctness. Based on the results, we proposed HalluCode, a benchmark for evaluating the performance of code LLMs in recognizing hallucinations. Hallucination recognition and mitigation experiments with HalluCode and HumanEval show existing LLMs face great challenges in recognizing hallucinations, particularly in identifying their types, and are hardly able to mitigate hallucinations. We believe our findings will shed light on future research about hallucination evaluation, detection, and mitigation, ultimately paving the way for building more effective and reliable code LLMs in the future.
Submission history
From: Fang Liu [view email][v1] Mon, 1 Apr 2024 07:31:45 UTC (584 KB)
[v2] Sat, 11 May 2024 02:50:50 UTC (584 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.