Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 Aug 2024]
Title:Towards Flexible Evaluation for Generative Visual Question Answering
View PDF HTML (experimental)Abstract:Throughout rapid development of multimodal large language models, a crucial ingredient is a fair and accurate evaluation of their multimodal comprehension abilities. Although Visual Question Answering (VQA) could serve as a developed test field, limitations of VQA evaluation, like the inflexible pattern of Exact Match, have hindered MLLMs from demonstrating their real capability and discourage rich responses. Therefore, this paper proposes the use of semantics-based evaluators for assessing unconstrained open-ended responses on VQA datasets. As characteristics of VQA have made such evaluation significantly different than the traditional Semantic Textual Similarity (STS) task, to systematically analyze the behaviour and compare the performance of various evaluators including LLM-based ones, we proposes three key properties, i.e., Alignment, Consistency and Generalization, and a corresponding dataset Assessing VQA Evaluators (AVE) to facilitate analysis. In addition, this paper proposes a Semantically Flexible VQA Evaluator (SFVE) with meticulous design based on the unique features of VQA evaluation. Experimental results verify the feasibility of model-based VQA evaluation and effectiveness of the proposed evaluator that surpasses existing semantic evaluators by a large margin. The proposed training scheme generalizes to both the BERT-like encoders and decoder-only LLM.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.