Computer Science > Computer Vision and Pattern Recognition
[Submitted on 12 Sep 2024 (v1), last revised 5 Dec 2024 (this version, v3)]
Title:Exploring Kolmogorov-Arnold networks for realistic image sharpness assessment
View PDF HTML (experimental)Abstract:Score prediction is crucial in evaluating realistic image sharpness based on collected informative features. Recently, Kolmogorov-Arnold networks (KANs) have been developed and witnessed remarkable success in data fitting. This study introduces the Taylor series-based KAN (TaylorKAN). Then, different KANs are explored in four realistic image databases (BID2011, CID2013, CLIVE, and KonIQ-10k) to predict the scores by using 15 mid-level features and 2048 high-level features. Compared to support vector regression, results show that KANs are generally competitive or superior, and TaylorKAN is the best one when mid-level features are used. This is the first study to investigate KANs on image quality assessment that sheds some light on how to select and further improve KANs in related tasks.
Submission history
From: Ze Chen [view email][v1] Thu, 12 Sep 2024 05:35:37 UTC (654 KB)
[v2] Sat, 14 Sep 2024 09:01:08 UTC (639 KB)
[v3] Thu, 5 Dec 2024 02:59:02 UTC (642 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.