Discussion
The principal finding of this study was that 6.4% of patients with diabetes taking medication dropped out, and that annual test rates were high for the HbA1c, serum creatinine, and serum lipid tests. In contrast, annual eye examination and urine microalbumin excretion test rates were low even among patients with good adherence to follow-up visits despite universal health insurance coverage and generous benefits packages in Japan. A 2-year longitudinal study design that considered dropouts, a large sample of cases, and medication data was the strength of this study compared with previous Japanese studies.27 ,28 In addition, we included patients in their 20s to 40s who were not adequately represented in earlier studies.
Routine HbA1c examination (≥1 per year) was conducted for most patients, especially in the insulin injection and oral antihyperglycemic agent groups. In these patients, regular testing of HbA1c levels may be required for titrating medications at least once every year. The HbA1c level was checked less frequently in the oral antihyperglycemic agent group than in the insulin injection group. The rates of the serum creatinine and lipid tests were also high. It appeared that both tests were conducted simultaneously with the HbA1c test. Although the JDS guidelines do not recommend an optimal frequency for the serum lipid test, the rate of lipid profile monitoring in Japan was high and comparable to that in the US or European countries.17 ,20
Both annual eye examination and urine microalbumin excretion test rates were lower than the rates for other quality indicators, which was similar to an earlier study.27 The eye examination rates in Japan (35.6% among patients taking oral antihyperglycemic agents) were much lower than in the US (73.4%) and European countries (74.8%).17 ,20 As for patient factors, the rates were lower especially among younger patients, which is compatible with a report from the US.39 On the other hand, the rate was lower in men than in women, which contradicts a report from Italy.10 Although our study population had generally favorable access to healthcare, our findings show that retinopathy is more likely to be overlooked in working-age men than women because male full-time workers with diabetes may not find the time to visit an ophthalmologist owing to the long working hours in Japan.40 Rates were also lower among patients who consulted only one clinic in the subject-identification year. In Japan, eye examinations are performed almost exclusively by ophthalmologists; as a result, patients with diabetes usually needed to be referred to another medical facility.26 Our findings suggest that the referral system between the clinics and ophthalmologists may not work effectively in the primary care setting. Interventions to encourage primary care doctors to use ‘the Standard Diabetes Manual’ developed by Japanese clinical researchers improved the performance of nephropathy screening, but did not improve retinopathy screening.41 Thus, interventions that will facilitate the referral system and enhance retinopathy screening and treatment in patients with diabetes such as written communication systems between primary care physicians and ophthalmologists, are needed.42
The annual urine microalbumin excretion test rate in Japan (15.4% among patients taking oral antihyperglycemic agents) was also much lower than in European countries (59.4%).20 Since the serum creatinine screening was optimal, physicians could have been diagnosing nephropathy only from the serum creatinine level, without testing urine microalbumin excretion, which might explain this discrepancy. Early nephropathy may remain undetected owing to such clinical practices. A lack of knowledge among physicians about the efficacy of microalbumin excretion tests or underpayment for these tests may result in this poor performance, despite the JDS guidelines' recommendation of annual urine microalbumin excretion tests. A previous study showed that multifaceted intervention (measuring quality indicators and providing feedback to physicians) was effective for improving the quality of care in primary care settings.38 Development and use of effective multifaceted interventions to improve clinical guideline adherence among physicians is key to preventing nephropathy progression in Japan.
Regarding an international comparison of quality of diabetes care, routine screening of retinopathy and nephropathy in Japan appeared to be poorer than in other developed countries, as discussed above. For instance, our findings suggest that quality indicators for nephropathy screening in Japan were much lower than in the UK; 75.6% of patients with diabetes taking medication were compliant with the UK National Institute for Health and Care Excellence guideline during 2007–2012.43 We suspect that the difference in medical care systems may be one of the reasons for this gap. While patients with diabetes in the UK are taken care of by general practitioners who are financially incentivized to provide a high quality of care (based on the UK's Quality and Outcomes Framework),44 ,45 there are no corresponding systems in Japan; Japanese physicians' pay is not dependent on quality of care provided. In addition, physicians could not afford to spend much time in consultation with outpatients because consultation frequencies are generally high in Japan.25 When we consider together these healthcare provider factors, there may be room to reconsider medical care provision systems for chronic disease care in Japan.
In this study, 6.4% of patients with diabetes taking medication dropped out in the quality-reporting year. As the quality of care and glycemic control would presumably deteriorate in dropouts because of less access to care, encouragement may be required to enhance adherence to follow-ups. The Japan Diabetes Outcome Intervention Trial 2 (J-DOIT2) has been launched to reduce dropout and improve clinical outcomes by providing external support to patients and physicians.26 ,38 In addition, all Health Insurance Societies have been required to make health promotion plans using their beneficiaries' health check-up data and health insurance claims data (referred to as ‘Data Health Plans’) since April 2015 to prevent chronic diseases including diabetic complications and to reduce the economic burden.46 For instance, medical consultation encouragement programs for non-consultation or dropouts are included in the ‘Data Health Plans’. Although consultation encouragement programs tend to be mainly focused on recent health practice, considering our results, adherence to clinical guidelines and referral systems among physicians (healthcare provider factors) would also need to be improved to enhance the overall quality of diabetes care in Japan.
Some limitations of our study should be noted. First, our study population consisted of workers working in large companies and factories, and their dependents. Since this could induce the ‘healthy worker effect’, the prevalence of diabetes in this group may have been lower than in the general population. In addition, gender-based differences in retinopathy screening performance may be inferred from the study population. These may affect the generalizability of this study. Second, although we analyzed patient characteristics using prescription data, blood glycemic levels including HbA1c levels for individual patients were unknown. Thus, some patients may have been inappropriately included as patients with type 2 diabetes in this study. This might have led to the underestimation of quality indicators; however, this only applies to patients not on medication. A cross-sectional study reported that the proportion of patients with diabetes treated with diet therapy (no medications) was 19.9% in 2011; these patients were mainly treated by diabetes specialists in Japan.47 Regarding the patients in this study who were not taking medication (42.2%), quality indicators of these patients may be underestimated due to misclassification; our definition may include patients with a tentative diagnosis of diabetes.48 These data should thus be interpreted with caution. Besides, the urine microalbumin excretion test rate may have been underestimated because patients with overt proteinuria were appropriately tested for urinary protein concentration rather than urine microalbumin concentration. Third, we failed to measure several other process quality indicators recommended by the JDS guidelines, including neuropathy screening, foot care practices, or dental examination because of limited claim data.14 Fourth, our definition of dropout may be too strict and lead to misclassification. A previous study defined dropout as over 12 months' non-attendance at the clinic.11 However, a routine visit to the clinic or hospital at least every 3 months was considered to be a reasonable frequency in the Japanese healthcare setting.38