Discussion
The present study, prospectively conducted among a nationwide sample of 0.5 million Chinese adults, indicated that adiposity measures were associated with an increased risk of future habitual snoring, and the latter was associated with a higher risk of type 2 diabetes in both men and women independent of adiposity measures. Besides, participants who had both habitual snoring and general/central obesity were at the highest risk of developing type 2 diabetes, indicating a multiplicative joint effect.
A systematic review and meta-analysis involving eight studies from Western countries suggested that habitual snoring was associated with an increased risk of type 2 diabetes compared with non-snores, with a pooled OR of 1.37 (95% CI 1.20 to 1.57) for six cross-sectional studies and a pooled HR of 1.65 (95% CI 1.30 to 2.08) for two cohorts.12 Mixed results from cohort studies in the Western population were reported. Two cohorts with small sample sizes in Sweden and the USA failed to spot a statistically significant association between snoring and diabetes.11 25 The Nurses’ Health Study (NHS) found that the relative risk of diabetes was 2.03 (95% CI 1.71 to 2.40) for women who snored regularly in comparison with those who did not.28 Recently, a study on the NHS study and the Health Professionals Follow-up Study involving a total of 151 194 participants suggested that habitual snoring without self-reported OSA was still independently associated with an increased risk of diabetes, although to a lesser extent (HR: 1.25, 95% CI 1.19 to 1.31).14 Another prospective study conducted among 10 854 participants from Northern Europe also found that snoring without self-reported OSA was independently associated with a higher risk of diabetes during a mean follow-up of 11.3 years.13
In contrast, prospective evidence is limited for the Asian population whose body sizes are different from their Western counterparts.16 17 Some cross-sectional studies suggested a positive correlation between habitual snoring and elevated glucose or hemoglobin A1c levels among Asian adults without prevalent diabetes.18 20–22 However, cross-sectional studies are prone to reverse causation and other biases. The present study, which was the first large-scale prospective cohort to assess the snoring–diabetes association among Chinese adults, found that habitual snoring was independently associated with a >10% increased risk of type 2 diabetes.
The mechanisms through which habitual snoring increases the risk of type 2 diabetes remained unclear but might be attributed to obstruction of the upper airway during sleep, similar to the mechanism of OSA, as snoring without OSA was considered an early stage in the spectrum of sleep-disordered breathing.29–31 Hypoxia caused by upper airway obstruction promotes sympathetic activation and thereby disrupting insulin sensitivity and glucose tolerance, leading to an increased risk of type 2 diabetes.32–34
Previous cross-sectional studies observed a positive correlation between central/general obesity and habitual snoring among the Chinese population.7 21 22 35 The present autoregressive cross-lagged analysis showed that the risks of habitual snoring within 8 years increased by ~30% per SD increment in baseline BMI and by 10% per SD increment in baseline waist circumference. Therefore, adiposity measures were critical confounding factors and should be carefully controlled for when assessing the snoring–diabetes association, as adiposity measures were also associated with risk of diabetes.33–35 In the present study, the observed effects of snoring and obesity on diabetes risk followed a multiplicative scale, and habitual snorers who had general obesity or central obesity were at the highest risk of developing type 2 diabetes among all combinations of snoring and obesity status. In particular, although Chinese adults’ mean BMI was lower than the Western population, they were more likely to be central obese than their Western counterparts at given BMI.16 17 Therefore, in the prevention of diabetes among Chinese adults, attention should not be focused solely on BMI. Snoring status and indicators of both general and central obesity should all be taken into account instead. Another clinical implication of our study is that even the early-stage symptom of sleep-disordered breathing can independently increase the risk of diabetes, highlighting the need for early detection and intervention for snoring.
The strengths of the present study include the geographical diversity of the study population, prospective design, long-term follow-up, and the high validity of diabetes diagnosis (a medical record review for about 1000 incident cases of type 2 diabetes found a positive predictive value of 97%). Also, the detailed information on adiposity measures and other baseline characteristics made it possible to minimize confounding bias by carefully adjusting for a range of potential confounding factors, and the large sample size enabled us to extensively explore the snoring–diabetes association within each subgroup of adiposity measures. Nevertheless, there are some limitations. First of all, the present study did not assess OSA objectively using polysomnography and thus was unable to examine whether the observed association between habitual snoring and type 2 diabetes was entirely due to the impact of OSA, which is a challenge that most snoring-related epidemiological studies confront. Second, for most participants, snoring status was self-reported only once at baseline. Some participants might under-report their habitual snoring status, especially for those who live alone, and snoring status could change during the follow-up. However, the misclassification was more likely to be non-differential and tended to underestimate the strength of association. Also, in the sensitivity analysis, we further excluded participants who were never married, divorced, or widowed to minimize the under-reporting for people without bed partners, which revealed similar results. Third, the underdiagnosis of incident diabetes is a prevalent problem in China2 which may affect our findings in the present study. However, the sensitivity analysis done in a subcohort of participants with updated information on self-reported or screen-detected diabetes at the second resurvey found no major change in the risk estimate. Last, the possibility of residual confounding bias could not be ruled out due to the observational nature of this study.