Objective
Despite intensive glycemic control and adequate management of cardiovascular risk factors, type 2 diabetes mellitus (T2DM) is accompanied by microvascular disease, including retinopathy, nephropathy and neuropathy, and macrovascular disease. Individuals with T2DM are prone to developing vascular calcifications, which considered playing a causal role in the etiology of diabetic complications.1
Previously, vascular calcifications were considered a result from passive precipitation of calcium and phosphate. Nowadays, the process of calcification is considered a consequence of a disequilibrium of a between calcification stimulating and inhibiting factors.2 Evidence exists that in persons with diabetes this equilibrium is unbalanced, leading to ectopic calcification in the media of the vessel wall, atherosclerotic plaque progression and subsequent cardiovascular events.1 3–6 The process of calcification is thought to be (at least partially) mediated by calciprotein particles (CPPs)7–9 that naturally circulate in the blood. Primary CPPs contain amorphous calcium phosphate, whereas secondary CPPs contain crystalline calcium phosphate.10–13 Secondary CPPs have the capability of inducing calcification of, for example, vascular smooth muscle cells,7 so the rate of primary-to-secondary CPP transitioning is viewed to be a measure of the serum anticalcification buffer capacity.
This increased formation and maturation and defective clearance of CPP may be an important novel cardiovascular risk factor (so-called mineral-stress hypothesis).14 Indeed, amorphous CPP1 exerted minor cellular responses in macrophage cell lines, while CPP2 appeared to induce oxidative stress and inflammation in macrophages,15 and oxidative stress, inflammation, and calcification in primary human aortic smooth muscle cell cultures.16 17 The T50 serum calcification propensity test has been developed to allow for quantification of the serum anticalcification buffer capacity.18 This novel T50 test measures in vitro how rapidly CPP2 are formed in a patient blood sample. In other words, the result of the T50 test reflects the velocity of calcium phosphate crystallization in blood with lower T50 values indicating increased calcification propensity. Results of the T50 test have been determined to be an independent mortality predictor in both chronic kidney disease (CKD)19 and in renal transplantation patient populations.20 21
Because any serum test that can be used reliably to assess vascular calcification would be considered an asset in assessing cardiovascular risk in patients, we aimed to assess the association of the T50 test with parameters of T2DM management in a large cohort of stable patients.