Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Serum response factor regulates a muscle-specific microRNA that _targets Hand2 during cardiogenesis

Abstract

Gradients of signalling and transcription factors govern many aspects of embryogenesis, highlighting the need for spatiotemporal control of regulatory protein levels. MicroRNAs are phylogenetically conserved small RNAs that regulate the translation of _target messenger RNAs, providing a mechanism for protein dose regulation. Here we show that microRNA-1-1 (miR-1-1) and miR-1-2 are specifically expressed in cardiac and skeletal muscle precursor cells. We found that the miR-1 genes are direct transcriptional _targets of muscle differentiation regulators including serum response factor, MyoD and Mef2. Correspondingly, excess miR-1 in the developing heart leads to a decreased pool of proliferating ventricular cardiomyocytes. Using a new algorithm for microRNA _target identification that incorporates features of RNA structure and _target accessibility, we show that Hand2, a transcription factor that promotes ventricular cardiomyocyte expansion, is a _target of miR-1. This work suggests that miR-1 genes titrate the effects of critical cardiac regulatory proteins to control the balance between differentiation and proliferation during cardiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-1 s are highly conserved and are cardiac- and skeletal-muscle-specific.
Figure 2: SRF, Mef2 and MyoD directly regulate embryonic expression of miR-1.
Figure 3: miR-1 regulates pool of proliferating ventricular cardiomyocytes and ventricular expansion.
Figure 4: Prediction and validation of miR-1 _targets.

Similar content being viewed by others

References

  1. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004)

    Article  CAS  Google Scholar 

  2. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  ADS  CAS  Google Scholar 

  3. Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343–349 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993)

    Article  CAS  Google Scholar 

  5. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993)

    Article  CAS  Google Scholar 

  6. Moss, E. G., Lee, R. C. & Ambros, V. The cold shock domain protein LIN-28 controls developmental timing in C. elegans and is regulated by the lin-4 RNA. Cell 88, 637–646 (1997)

    Article  CAS  Google Scholar 

  7. Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B. & Cohen, S. M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003)

    Article  CAS  Google Scholar 

  8. Abrahante, J. E. et al. The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625–637 (2003)

    Article  CAS  Google Scholar 

  9. Johnston, R. J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003)

    Article  ADS  CAS  Google Scholar 

  10. Vella, M. C., Choi, E. Y., Lin, S. Y., Reinert, K. & Slack, F. J. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-41 3′UTR. Genes Dev. 18, 132–137 (2004)

    Article  CAS  Google Scholar 

  11. Chang, S., Johnston, R. J. Jr, Frokjaer-Jensen, C., Lockery, S. & Hobert, O. MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785–789 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Chien, K. R. & Olson, E. N. Converging pathways and principles in heart development and disease: CV@CSH. Cell 110, 153–162 (2002)

    Article  CAS  Google Scholar 

  13. Srivastava, D. & Olson, E. N. A genetic blueprint for cardiac development. Nature 407, 221–226 (2000)

    Article  CAS  Google Scholar 

  14. Norman, C., Runswick, M., Pollock, R. & Treisman, R. Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-fos serum response element. Cell 55, 989–1003 (1988)

    Article  CAS  Google Scholar 

  15. Miralles, F., Posern, G., Zaromytidou, A. I. & Treisman, R. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113, 329–342 (2003)

    Article  CAS  Google Scholar 

  16. Shin, C. H. et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell 110, 725–735 (2002)

    Article  CAS  Google Scholar 

  17. Chen, F. et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell 110, 713–723 (2002)

    Article  CAS  Google Scholar 

  18. Yelon, D. et al. The bHLH transcription factor Hand2 plays parallel roles in zebrafish heart and pectoral fin development. Development 127, 2573–2582 (2000)

    CAS  PubMed  Google Scholar 

  19. Srivastava, D., Cserjesi, P. & Olson, E. N. A subclass of bHLH proteins required for cardiac morphogenesis. Science 270, 1995–1999 (1995)

    Article  ADS  CAS  Google Scholar 

  20. Srivastava, D. et al. Regulation of cardiac mesodermal and neural crest development by the bHLH transcription factor, dHAND. Nature Genet. 16, 154–160 (1997)

    Article  CAS  Google Scholar 

  21. Firulli, A. B., McFadden, D. G., Lin, Q., Srivastava, D. & Olson, E. N. Heart and extra-embryonic mesodermal defects in mouse embryos lacking the bHLH transcription factor Hand1. Nature Genet. 18, 266–270 (1998)

    Article  CAS  Google Scholar 

  22. Yamagishi, H. et al. The combinatorial activities of Nkx2.5 and dHAND are essential for cardiac ventricle formation. Dev. Biol. 239, 190–203 (2001)

    Article  CAS  Google Scholar 

  23. McFadden, D. G. et al. The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development 132, 189–201 (2005)

    Article  CAS  Google Scholar 

  24. Wang, D. et al. Activation of cardiac gene expression by myocardin, a transcriptional cofactor for serum response factor. Cell 105, 851–862 (2001)

    Article  CAS  Google Scholar 

  25. Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001)

    Article  ADS  CAS  Google Scholar 

  26. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001)

    Article  ADS  CAS  Google Scholar 

  27. Kelly, R. G. & Buckingham, M. E. The anterior heart-forming field: voyage to the arterial pole of the heart. Trends Genet. 18, 210–216 (2002)

    Article  CAS  Google Scholar 

  28. Miano, J. M. et al. Restricted inactivation of serum response factor to the cardiovascular system. Proc. Natl Acad. Sci. USA 101, 17132–17137 (2004)

    Article  ADS  CAS  Google Scholar 

  29. Wang, Z. et al. Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression. Nature 428, 185–189 (2004)

    Article  ADS  CAS  Google Scholar 

  30. Wang, D. Z. & Olson, E. N. Control of smooth muscle development by the myocardin family of transcriptional coactivators. Curr. Opin. Genet. Dev. 14, 558–566 (2004)

    Article  CAS  Google Scholar 

  31. Zhou, J. & Herring, B. P. Mechanisms responsible for the promoter-specific effects of myocardin. J. Biol. Chem. 280, 1086–1089 (2005)

    Article  Google Scholar 

  32. Lai, E. C. Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nature Genet. 30, 363–364 (2002)

    Article  CAS  Google Scholar 

  33. Stark, A., Brennecke, J., Russell, R. B. & Cohen, S. M. Identification of Drosophila microRNA _targets. PLoS Biol. 1, E60 (2003)

    Article  Google Scholar 

  34. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P. & Burge, C. B. Prediction of mammalian microRNA _targets. Cell 115, 787–798 (2003)

    Article  CAS  Google Scholar 

  35. Kiriakidou, M. et al. A combined computational-experimental approach predicts human microRNA _targets. Genes Dev. 18, 1165–1178 (2004)

    Article  CAS  Google Scholar 

  36. John, B. et al. Human MicroRNA _targets. PLoS Biol. 2, e363 (2004)

    Article  Google Scholar 

  37. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA _targets. Cell 120, 15–20 (2005)

    Article  CAS  Google Scholar 

  38. Rhoades, M. W. et al. Prediction of plant microRNA _targets. Cell 110, 513–520 (2002)

    Article  CAS  Google Scholar 

  39. Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594–596 (2004)

    Article  ADS  CAS  Google Scholar 

  40. Poy, M. N. et al. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226–230 (2004)

    Article  ADS  CAS  Google Scholar 

  41. Lee, N. S. et al. Expression of small interfering RNAs _targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–505 (2002)

    Article  CAS  Google Scholar 

  42. Doench, J. G. & Sharp, P. A. Specificity of microRNA _target selection in translational repression. Genes Dev. 18, 504–511 (2004)

    Article  CAS  Google Scholar 

  43. Bock-Marquette, I., Saxena, A., White, M. D., Dimaio, J. M. & Srivastava, D. Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432, 466–472 (2004)

    Article  ADS  CAS  Google Scholar 

  44. Grosshans, H., Johnson, T., Reinert, K. L., Gerstein, M. & Slack, F. J. The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321–330 (2005)

    Article  CAS  Google Scholar 

  45. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004)

    Article  CAS  Google Scholar 

  46. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003)

    Article  CAS  Google Scholar 

  47. Dsouza, M., Larsen, N. & Overbeek, R. Searching for patterns in genomic data. Trends Genet. 13, 497–498 (1997)

    Article  CAS  Google Scholar 

  48. Zuker, M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415 (2003)

    Article  CAS  Google Scholar 

  49. Yamagishi, H. et al. Tbx1 is regulated by tissue-specific forkhead proteins through a common Sonic hedgehog-responsive enhancer. Genes Dev. 7, 269–281 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank K. Ivey for critical discussions and for preparation of figures; members of the Srivastava laboratory for helpful discussions; J. McAnally for generation of transgenic mice; E. N. Olson for plasmids; and R. Misra and R. Balza for providing SRF-null embryonic heart cDNA. D. S. was supported by grants from NHLB/NIH, the March of Dimes Birth Defects Foundation and the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Srivastava.

Ethics declarations

Competing interests

MicroRNA 1 sequences have been deposited in Genbank under the following accession numbers: DQ066648 and DQ 066649 (Pan troglodytes pre-microRNA-1-1 and 1-2), DQ066650 (rat pre-microRNA-1), DQ066651 (Danio rerio pre-microRNA-1) and DQ066652 (Xenopus tropicalis pre-microRNA-1). Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Supplementary information

Supplementary Figure S1

Processed miR-1 is 21bp in length. This figure shows that endogenous mature form of miR-1 in skeletal muscle and heart is 21bp. (DOC 362 kb)

Supplementary Figure S2

Alignment of known microRNA _targets from different species. This figure shows that virtually all low δG sites are completely conserved, whereas high δG sites have variances in the sequence matching the critical 5' region of the miRNA. (DOC 100 kb)

Supplementary Figure S3

Conserved miR-1 _target sites in Hand2, TB4 and IGF1 3' UTRs. This figure shows sequence complementarity between miR-1 and 3' UTRs of Hand2, TB4 and IGF1 . (DOC 23 kb)

Supplementary Figure S4

miR-1 _target validation. This figure shows successful expression of mutant miR-1. Wild type or mutant miR-1s can repress the corresponding 3'UTRs or their mutant forms, respectively. (DOC 421 kb)

Supplementary Figure S5

Transgenic overexpression of αMHC-miR-1. This figure shows that miR-1 can be successfully highly expressed in heart in vivo under control of an alpha-MHC promoter. (DOC 247 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Samal, E. & Srivastava, D. Serum response factor regulates a muscle-specific microRNA that _targets Hand2 during cardiogenesis. Nature 436, 214–220 (2005). https://doi.org/10.1038/nature03817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature03817

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
  NODES
Association 1
INTERN 1
Note 1
twitter 1