Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data
Abstract
:1. Introduction
2. Study Area and Datasets
3. Methodology
3.1. Derivation of Phenological Metrics
3.2. Data Normalization and Principal Component Analysis
3.3. Pheno-Class Derivation Using Unsupervised Isodata Technique
3.4. Evaluation of Derived Pheno-Class Map
4. Results and Discussions
4.1. Examples of the Five-Year Median Phenological Metric Maps
4.2. Pheno-Class Map for the Conterminous United States
4.3. Intercomparison of Pheno-Class and Land Cover
Land cover/Pheno-class | Open Water | Perennial Ice/Snow | Developed, Urban area | Barren Land (Rock/Sand/Clay) | Deciduous Forest | Evergreen Forest | Mixed Forest | Shrub/Scrub | Grassland/Herbaceous | Pasture/Hay | Cultivated Crops | Woody Wetlands | Emergent Herbaceous Wetlands |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.0 | 0.0 | 10.4 | 9.4 | 14.4 | 13.1 | 3.1 | 4.3 | 5.4 | 3.9 | 5.6 | 7.6 | 22.4 |
2 | 0.0 | 0.1 | 0.4 | 3.7 | 0.0 | 38.1 | 0.1 | 51.5 | 4.9 | 0.2 | 0.8 | 0.1 | 0.1 |
3 | 0.0 | 0.4 | 0.1 | 4.4 | 14.5 | 49.9 | 1.1 | 14.3 | 12.8 | 1.5 | 0.0 | 0.5 | 0.3 |
4 | 0.0 | 0.1 | 0.3 | 1.8 | 0.6 | 75.7 | 0.1 | 14.2 | 6.8 | 0.2 | 0.0 | 0.1 | 0.1 |
5 | 0.0 | 0.0 | 0.7 | 2.9 | 0.0 | 9.8 | 0.0 | 66.2 | 19.0 | 0.3 | 0.9 | 0.1 | 0.1 |
6 | 0.0 | 0.0 | 0.9 | 1.5 | 0.6 | 22.1 | 0.0 | 48.7 | 23.8 | 1.3 | 0.3 | 0.3 | 0.5 |
7 | 0.0 | 0.1 | 0.2 | 1.2 | 0.2 | 36.7 | 0.0 | 51.2 | 9.5 | 0.4 | 0.3 | 0.1 | 0.1 |
8 | 0.0 | 0.0 | 0.1 | 0.4 | 0.1 | 10.4 | 0.0 | 81.2 | 6.6 | 0.4 | 0.3 | 0.1 | 0.3 |
9 | 0.0 | 0.0 | 0.2 | 2.4 | 0.0 | 4.2 | 0.0 | 83.1 | 9.1 | 0.4 | 0.3 | 0.1 | 0.1 |
10 | 0.0 | 0.0 | 1.1 | 6.1 | 0.0 | 1.6 | 0.0 | 70.4 | 18.0 | 0.6 | 1.6 | 0.3 | 0.2 |
11 | 0.0 | 0.0 | 0.4 | 0.3 | 5.7 | 30.1 | 0.2 | 38.2 | 20.3 | 2.8 | 0.7 | 0.5 | 0.9 |
12 | 0.0 | 0.0 | 0.2 | 2.3 | 0.0 | 11.0 | 0.0 | 78.0 | 7.2 | 0.4 | 0.7 | 0.1 | 0.1 |
13 | 0.0 | 0.0 | 0.6 | 0.3 | 0.3 | 10.5 | 0.1 | 47.5 | 31.3 | 2.5 | 6.2 | 0.4 | 0.4 |
14 | 0.0 | 0.0 | 0.6 | 0.6 | 0.0 | 3.4 | 0.0 | 35.8 | 48.2 | 1.6 | 9.1 | 0.3 | 0.3 |
15 | 7.4 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
16 | 0.0 | 0.0 | 0.3 | 4.3 | 0.0 | 2.1 | 0.1 | 80.4 | 10.2 | 0.5 | 1.8 | 0.1 | 0.1 |
17 | 0.0 | 0.0 | 0.2 | 4.2 | 0.0 | 8.4 | 0.1 | 79.4 | 6.1 | 0.4 | 1.1 | 0.1 | 0.1 |
18 | 0.0 | 0.0 | 4.3 | 4.8 | 0.2 | 3.3 | 0.5 | 74.5 | 5.9 | 0.9 | 5.1 | 0.3 | 0.3 |
19 | 0.0 | 0.0 | 0.7 | 0.3 | 0.3 | 4.6 | 0.4 | 37.2 | 23.3 | 1.1 | 31.9 | 0.1 | 0.2 |
20 | 0.0 | 0.0 | 3.3 | 2.3 | 0.2 | 7.0 | 0.3 | 58.7 | 17.4 | 0.5 | 9.9 | 0.2 | 0.2 |
21 | 0.0 | 0.0 | 0.7 | 0.6 | 0.1 | 2.0 | 0.0 | 20.1 | 56.2 | 0.6 | 19.2 | 0.3 | 0.2 |
22 | 0.0 | 0.0 | 1.4 | 0.3 | 0.0 | 4.0 | 0.0 | 19.3 | 51.4 | 1.8 | 20.7 | 0.5 | 0.5 |
23 | 0.0 | 0.0 | 0.8 | 0.4 | 4.3 | 37.3 | 0.1 | 15.0 | 15.5 | 7.1 | 17.1 | 1.3 | 1.2 |
24 | 0.0 | 0.1 | 0.5 | 0.8 | 0.3 | 72.9 | 0.2 | 12.2 | 4.2 | 0.3 | 8.2 | 0.1 | 0.2 |
25 | 0.0 | 0.0 | 0.7 | 0.2 | 2.2 | 2.4 | 0.1 | 5.4 | 61.0 | 2.8 | 24.2 | 0.5 | 0.5 |
26 | 0.0 | 0.0 | 1.5 | 0.9 | 0.4 | 38.0 | 0.5 | 42.1 | 5.2 | 0.3 | 10.9 | 0.2 | 0.1 |
27 | 0.0 | 0.0 | 0.8 | 0.2 | 3.7 | 69.6 | 2.5 | 17.2 | 3.3 | 0.9 | 1.2 | 0.7 | 0.2 |
28 | 0.0 | 0.0 | 4.8 | 0.4 | 2.1 | 12.3 | 2.5 | 25.7 | 16.5 | 12.3 | 20.2 | 2.0 | 1.3 |
29 | 0.0 | 0.0 | 8.2 | 0.3 | 6.2 | 16.5 | 3.4 | 14.1 | 14.1 | 17.8 | 10.5 | 7.4 | 1.4 |
30 | 0.0 | 0.0 | 14.4 | 0.4 | 9.9 | 4.9 | 0.9 | 8.5 | 18.8 | 13.4 | 24.5 | 3.1 | 1.0 |
31 | 0.0 | 0.0 | 0.8 | 0.1 | 13.8 | 2.2 | 0.9 | 0.9 | 33.8 | 8.8 | 36.3 | 1.0 | 1.3 |
32 | 0.0 | 0.0 | 1.0 | 0.1 | 4.8 | 0.3 | 0.1 | 0.1 | 3.3 | 7.1 | 80.1 | 1.2 | 1.9 |
33 | 0.0 | 0.0 | 5.4 | 0.2 | 15.9 | 5.1 | 2.4 | 1.1 | 2.5 | 13.9 | 45.5 | 6.6 | 1.5 |
34 | 0.0 | 0.0 | 9.9 | 1.3 | 1.2 | 17.8 | 0.9 | 26.0 | 7.7 | 7.7 | 11.3 | 10.9 | 5.2 |
35 | 0.0 | 0.0 | 5.7 | 0.4 | 6.6 | 36.0 | 5.8 | 7.0 | 5.8 | 8.0 | 7.6 | 15.0 | 2.2 |
36 | 0.0 | 0.0 | 5.8 | 0.2 | 26.1 | 14.7 | 5.2 | 4.0 | 4.0 | 23.1 | 6.1 | 9.7 | 1.1 |
37 | 0.0 | 0.0 | 4.5 | 0.1 | 46.3 | 3.8 | 3.5 | 0.9 | 6.0 | 20.4 | 8.5 | 5.6 | 0.5 |
38 | 0.0 | 0.0 | 1.6 | 0.1 | 58.2 | 2.2 | 2.4 | 0.6 | 6.1 | 10.5 | 11.9 | 5.0 | 1.4 |
39 | 0.0 | 0.0 | 2.7 | 0.8 | 0.6 | 1.3 | 1.1 | 16.5 | 40.1 | 5.5 | 29.8 | 0.4 | 1.1 |
40 | 0.0 | 0.0 | 0.8 | 2.8 | 0.1 | 25.1 | 0.3 | 59.6 | 7.0 | 0.2 | 3.4 | 0.3 | 0.2 |
Land cover/Pheno-class | Open Water | Perennial Ice/Snow | Developed, Urban area | Barren Land (Rock/Sand/Clay) | Deciduous Forest | Evergreen Forest | Mixed Forest | Shrub/Scrub | Grassland/Herbaceous | Pasture/Hay | Cultivated Crops | Woody Wetlands | Emergent Herbaceous Wetlands |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 0.00 | 0.01 | 0.03 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.09 |
2 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.05 | 0.00 | 0.04 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
3 | 0.00 | 0.00 | 0.00 | 0.03 | 0.02 | 0.08 | 0.01 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
4 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.10 | 0.00 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
5 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.00 | 0.07 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 |
6 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.03 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
7 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
8 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
9 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.05 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
10 | 0.00 | 0.00 | 0.00 | 0.04 | 0.00 | 0.00 | 0.00 | 0.06 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
11 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.03 | 0.00 | 0.03 | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 |
12 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.05 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
13 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
14 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.05 | 0.00 | 0.01 | 0.00 | 0.00 |
15 | 0.08 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
16 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.00 | 0.00 | 0.07 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
17 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.01 | 0.00 | 0.10 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
18 | 0.00 | 0.00 | 0.01 | 0.04 | 0.00 | 0.01 | 0.00 | 0.11 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 |
19 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.02 | 0.00 | 0.02 | 0.00 | 0.00 |
20 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.03 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 |
21 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.02 | 0.11 | 0.00 | 0.03 | 0.00 | 0.00 |
22 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.09 | 0.00 | 0.03 | 0.00 | 0.00 |
23 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.05 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.01 |
24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
25 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.17 | 0.01 | 0.05 | 0.00 | 0.00 |
26 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.00 | 0.02 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
27 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.01 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
28 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.01 | 0.01 |
29 | 0.00 | 0.00 | 0.02 | 0.00 | 0.01 | 0.03 | 0.02 | 0.01 | 0.02 | 0.05 | 0.01 | 0.03 | 0.01 |
30 | 0.00 | 0.00 | 0.03 | 0.00 | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.03 | 0.03 | 0.01 | 0.01 |
31 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.01 | 0.00 | 0.07 | 0.03 | 0.07 | 0.01 | 0.01 |
32 | 0.00 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.41 | 0.01 | 0.02 |
33 | 0.00 | 0.00 | 0.02 | 0.00 | 0.06 | 0.02 | 0.02 | 0.00 | 0.01 | 0.07 | 0.17 | 0.05 | 0.01 |
34 | 0.00 | 0.00 | 0.02 | 0.01 | 0.00 | 0.02 | 0.01 | 0.02 | 0.01 | 0.02 | 0.01 | 0.04 | 0.04 |
35 | 0.00 | 0.00 | 0.02 | 0.00 | 0.02 | 0.13 | 0.05 | 0.01 | 0.02 | 0.04 | 0.02 | 0.11 | 0.02 |
36 | 0.00 | 0.00 | 0.02 | 0.00 | 0.12 | 0.06 | 0.05 | 0.01 | 0.01 | 0.15 | 0.02 | 0.08 | 0.01 |
37 | 0.00 | 0.00 | 0.02 | 0.00 | 0.28 | 0.01 | 0.03 | 0.00 | 0.02 | 0.13 | 0.03 | 0.04 | 0.00 |
38 | 0.00 | 0.00 | 0.01 | 0.00 | 0.30 | 0.01 | 0.02 | 0.00 | 0.02 | 0.05 | 0.03 | 0.03 | 0.01 |
39 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.04 | 0.01 | 0.02 | 0.00 | 0.01 |
40 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
4.4. In-depth Analysis of Selected Pheno-Classes
5. Conclusions
Acknowledgements
References
- Lieth, H. Purposes of a phenology book. In Phenology and Seasonality Modeling; Lieth, H., Ed.; Springer-Verlag: New York, NY, USA, 1974; pp. 3–19. [Google Scholar]
- Barnes, P.W.; Tieszen, L.L.; Ode, D.J. Distribution, production, and diversity of C 3-and C 4-dominated communities in a mixed prairie. Can. J. Bot. 1983, 61, 741–751. [Google Scholar] [CrossRef]
- Flint, H.L. Phenology and genecology of woody plants. In Phenology and Seasonality Modeling; Lieth, H., Ed.; Springer-Verlag: New York, NY, USA, 1974; pp. 83–97. [Google Scholar]
- Lewis, J.K. The grassland biome: A synthesis of structure and function, 1970. In Preliminary Analysis of Structure and Function in Grasslands; Range Science Series 10 N; French, R., Ed.; Colorado State University: Fort Collins, CO, USA, 1971; pp. 317–387. [Google Scholar]
- van Vliet, A.J.H.; Schwartz, M.D. Phenology and climate: The timing of life cycle events as indicators of climate variability and change. Int. J. Climatol. 2002, 22, 1713–1714. [Google Scholar] [CrossRef]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Geological Survey Professional Paper P 0964; US Geological Survey: Reston, VA, USA, 1976.
- Gu, Y.; Brown, J.F.; Verdin, J.P.; Wardlow, B. A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- MacDonald, R.B.; Hall, F.G. Global Crop Forecasting. Science 1980, 208, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Nemani, R.; Hashimoto, H.; Votava, P. Monitoring and forecasting ecosystem dynamics using the Terrestrial Observation and Prediction System (TOPS). Rem. Sens. Environ. 2009, 113, 1497–1509. [Google Scholar] [CrossRef]
- Peters, A.J.; Walter-Shea, E.A.; Ji, L. Drought monitoring with NDVI-based Standardized Vegetation Index. Photogramm. Eng. Rem. Sens. 2002, 68, 71–75. [Google Scholar]
- Reed, B.C. Using remote sensing and geographic information systems for analysing landscape/drought interaction. Int. J.Remote Sens. 1993, 14, 3489–3503. [Google Scholar] [CrossRef]
- Reed, B.C.; Brown, J.F.; Vanderzee, D. Measuring phenological variability from satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [Google Scholar] [CrossRef]
- Reed, B.C.; White, M.A.; Brown, J.F. Remote sensing phenology. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 365–381. [Google Scholar]
- White, M.A.; de Beurs, K.M.; Didan, K. Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982–2006. Global Change Biol. 2009, 15, 2335–2359. [Google Scholar] [CrossRef]
- White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochem. Cycle 1997, 11, 217–234. [Google Scholar] [CrossRef]
- Yang, L.; Wylie, B.K.; Tieszen, L.L. An analysis of relationships among climate forcing and time-integrated NDVI of grasslands over the U.S. northern and central Great Plains. Rem. Sens. Environ. 1998, 65, 25–37. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Rem. Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Trans. Geosci. Rem. Sens. 2002, 40, 1824–1832. [Google Scholar] [CrossRef]
- Chorley, R.J.; Haggett, P. Models in Geography; Methuen: London, UK, 1967. [Google Scholar]
- Johnson, A.F. A Programmed Course in Cataloguing and Classification; Deutsch: London, UK, 1968. [Google Scholar]
- Omernik, J.M. Ecoregions of the conterminous United States. Ann. Assoc. Am. Geogr. 1987, 77, 118–125. [Google Scholar] [CrossRef]
- Bailey, R.G.; Hogg, H.C. A world ecoregions map for resource reporting. Environ. Conserv. 1986, 13, 195–202. [Google Scholar] [CrossRef]
- Homer, C.; Huang, C.; Yang, L. Development of a 2001 National Land-Cover Database for the United States. Photogramm. Eng. Rem. Sens. 2004, 70, 829–840. [Google Scholar] [CrossRef]
- White, M.A.; Hoffman, F.; Hargrove, W.W. A global framework for monitoring phenological responses to climate change. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Hargrove, W.W.; Spruce, J.P.; Gasser, G.E.; Hoffman, F.M. Toward a national early warning system for forest disturbances using remotely sensed canopy phenology. Photogramm. Eng. Rem. Sens. 2009, 75, 1150–1156. [Google Scholar]
- Burgan, R.E.; Klaver, R.W.; Klarer, J.M. Fuel models and fire potential from satellite and surface observations. Int. J. Wildland Fire 1998, 8, 159–170. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. B. Am. Meteorol. Soc 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product–Global evaluation by comparison with the MODIS active fire product. Rem. Sens. Environ. 2008, 112, 3690–3707. [Google Scholar] [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Rem. Sens. Environ. 2005, 97, 137–162. [Google Scholar] [CrossRef]
- Vogel, R.L.; Privette, J.L.; Yu, N. Creating proxy VIIRS data from MODIS: Spectral transformations for mid- and thermal-infrared bands. IEEE Trans. Geosci. Rem. Sens. 2008, 46, 3768–3782. [Google Scholar] [CrossRef]
- Yu, Y.; Privette, J.L.; Pinheiro, A.C. Analysis of the NPOESS VIIRS land surface temperature algorithm using MODIS data. IEEE Trans. Geosci. Rem. Sens. 2005, 43, 2340–2349. [Google Scholar]
- van Leeuwen, W.J.D.; Orr, B.J.; Marsh, S.E.; Herrmann, S.M. Multi-sensor NDVI data continuity: Uncertainties and implications for vegetation monitoring applications. Rem. Sens. Environ. 2006, 100, 67–81. [Google Scholar] [CrossRef]
- Brown, J.F.; Wardlow, B.D.; Tadesse, T.; Hayes, M.J.; Reed, B.C. The Vegetation Drought Response Index (VegDRI): A new integrated approach for monitoring drought stress in vegetation. GISci. Remote Sens. 2008, 45, 16–46. [Google Scholar] [CrossRef]
- Land Processes Distributed Active Archive Center. Available online: http://lpdaac.usgs.gov/ (accessed on 27 September 2006).
- Swets, D.L.; Reed, B.C.; Rowland, J.R. A weighted least-squares approach to temporal smoothing of NDVI. In Proceedings of ASPRS Annual Conference, From Image to Information, Portland, OR, USA, 1999.
- Inouye, D.W.; Wielgolaski, F.E. High Altitude Climates. In Phenology: An Integrative Environmental Science; Schwartz, M.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 195–214. [Google Scholar]
- Richards, J.A.; Jia, X. Remote Sensing Digital Image Analysis: An Introduction, 3rd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley: Reading, MA, USA, 1974. [Google Scholar]
- Hall, R.J.; Volney, W.J.A.; Wang, Y. Using a geographic information system (GIS) to associate forest stand characteristics with top kill due to defoliation by the jack pine budworm. Can. J. Forest Res. 1998, 28, 1317–1327. [Google Scholar] [CrossRef]
- Minnick, R.F. A method for the measurement of areal correspondence. Pap. Mich. Acad. Sci. Art. Lett. 1964, 49, 333–344. [Google Scholar]
- van Leeuwen, W.J.D.; Davison, J.E.; Casady, G.M.; Marsh, S.E. Phenological characterization of desert sky island vegetation communities with remotely sensed and climate time-series data. Remote Sens. 2010, 2, 388–415. [Google Scholar] [CrossRef]
- Morisette, J.T.; Richardson, A.D.; Knapp, A.K. Tracking the rhythm of the seasons in the face of global change: phenological research in the 21st century. Front. Ecol. Environ. 2009, 7, 253–260. [Google Scholar] [CrossRef]
© 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Gu, Y.; Brown, J.F.; Miura, T.; Van Leeuwen, W.J.D.; Reed, B.C. Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data. Remote Sens. 2010, 2, 526-544. https://doi.org/10.3390/rs2020526
Gu Y, Brown JF, Miura T, Van Leeuwen WJD, Reed BC. Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data. Remote Sensing. 2010; 2(2):526-544. https://doi.org/10.3390/rs2020526
Chicago/Turabian StyleGu, Yingxin, Jesslyn F. Brown, Tomoaki Miura, Willem J. D. Van Leeuwen, and Bradley C. Reed. 2010. "Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data" Remote Sensing 2, no. 2: 526-544. https://doi.org/10.3390/rs2020526
APA StyleGu, Y., Brown, J. F., Miura, T., Van Leeuwen, W. J. D., & Reed, B. C. (2010). Phenological Classification of the United States: A Geographic Framework for Extending Multi-Sensor Time-Series Data. Remote Sensing, 2(2), 526-544. https://doi.org/10.3390/rs2020526