Armadillos (Spanish for 'little armored ones') are New World placental mammals in the order Cingulata. They form part of the superorder Xenarthra, along with the anteaters and sloths. 21 extant species of armadillo have been described, some of which are distinguished by the number of bands on their armor. All species are native to the Americas, where they inhabit a variety of different environments.

Armadillo
Temporal range: 58.7–0 Ma Late Paleocene – Recent
From top to bottom †Glyptodon, nine-banded armadillo (Dasypus novemcinctus), pink fairy armadillo (Chlamyphorus truncatus)
From top to bottom Glyptodon, nine-banded armadillo (Dasypus novemcinctus), pink fairy armadillo (Chlamyphorus truncatus)
Scientific classificationEdit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Superorder: Xenarthra
Order: Cingulata
Families
Nine-banded armadillo skeleton.
Three-banded armadillo skeleton on display at the Museum of Osteology

Living armadillos are characterized by a leathery armor shell and long, sharp claws for digging. They have short legs, but can move quite quickly. The average length of an armadillo is about 75 cm (30 in), including its tail. The giant armadillo grows up to 150 cm (59 in) and weighs up to 54 kg (119 lb), while the pink fairy armadillo has a length of only 13–15 cm (5–6 in). When threatened by a predator, Tolypeutes species frequently roll up into a ball; they are the only species of armadillo capable of this.

Recent genetic research has shown that the megafaunal glyptodonts (up to 1.5 metres (4.9 ft) tall with maximum body masses of around 2 tonnes), which became extinct around 12,000 years ago are true armadillos more closely related to all other living armadillos than to Dasypus (the long-nosed or naked-tailed armadillos). Armadillos are currently classified into two families, Dasypodidae, with Dasypus as the only living genus, and Chlamyphoridae, which contains all other living armadillos as well as the glyptodonts.[1]

Etymology

The word armadillo means "little armored one" in Spanish;[2][3] it is derived from "armadura" (armor), with the diminutive suffix "-illo" attached. While the phrase "little armored one" would translate to "armadito" normally, the suffix "-illo" can be used in place of "-ito" when the diminutive is used in an approximative tense.[4] The Aztecs called them āyōtōchtli [aːjoːˈtoːt͡ʃt͡ɬi], Nahuatl for "turtle-rabbit": āyōtl [ˈaːjoːt͡ɬ] (turtle) and tōchtli [ˈtoːt͡ʃt͡ɬi] (rabbit).[5] The Portuguese word for "armadillo" is tatu which is derived from the Tupi language[6] ta' "bark, armor" and tu "dense";[7] and used in Argentina, Bolivia, Brasil, Paraguay and Uruguay; similar names are also found in other, especially European, languages.

Other various vernacular names given are:

  • quirquincho (from Quechua: kirkinchu[8]) in Argentina, Bolivia, Chile, Colombia and Peru;
  • cuzuco (from Nahuatl) in Costa Rica, El Salvador, Honduras and Nicaragua;
  • mulita in Argentina and Uruguay;
  • peludo in Argentina, Chile, Colombia and Uruguay;
  • piche in Argentina, Brasil, Chile, Colombia and Paraguay;
  • cachicamo in Colombia and Venezuela
  • gurre in Tolima, Caldas and Antioquia, Colombia;
  • jerre-jerre in Caribbean Colombia;
  • jueche in southeast Mexico;
  • toche in the state of Veracruz, Mexico;
  • carachupa in Perú.

Classification

Family Dasypodidae

Family Chlamyphoridae

† indicates extinct taxon

Phylogeny

Below is a recent simplified phylogeny of the xenarthran families, which includes armadillos.[10][11] The dagger symbol, "†", denotes extinct groups.

Xenarthra

Evolution

Recent genetic research suggests that an extinct group of giant armored mammals, the glyptodonts, should be included within the lineage of armadillos, having diverged some 35 million years ago, more recently than previously assumed.[12]

Distribution

Like all of the Xenarthra lineages, armadillos originated in South America. Due to the continent's former isolation, they were confined there for most of the Cenozoic. The recent formation of the Isthmus of Panama allowed a few members of the family to migrate northward into southern North America by the early Pleistocene, as part of the Great American Interchange.[13] (Some of their much larger cingulate relatives, the pampatheres and chlamyphorid glyptodonts, made the same journey.)[13]

Today, all extant armadillo species are still present in South America. They are particularly diverse in Paraguay (where 11 species exist) and surrounding areas. Many species are endangered. Some, including four species of Dasypus, are widely distributed over the Americas, whereas others, such as Yepes's mulita, are restricted to small ranges. Two species, the northern naked-tailed armadillo and nine-banded armadillo, are found in Central America; the latter has also reached the United States, primarily in the south-central states (notably Texas), but with a range that extends as far east as North Carolina and Florida, and as far north as southern Nebraska and southern Indiana.[14] Their range has consistently expanded in North America over the last century due to a lack of natural predators. Armadillos are increasingly documented in southern Illinois and are tracking northwards due to climate change.[15]

Characteristics

Size

The smallest species of armadillo, the pink fairy armadillo, weighs around 85 g (3.0 oz) and is 13–15 cm (5.1–5.9 in) in total length. The largest species, the giant armadillo, can weigh up to 54 kg (119 lb), and can be 150 cm (59 in) long.[16]

Diet and predation

The diets of different armadillo species vary, but consist mainly of insects, grubs, and other invertebrates. Some species, however, feed almost entirely on ants and termites.

They are prolific diggers. Many species use their sharp claws to dig for food, such as grubs, and to dig dens. The nine-banded armadillo prefers to build burrows in moist soil near the creeks, streams, and arroyos around which it lives and feeds.

 
Paws of a hairy and a giant armadillo

Armadillos have very poor eyesight, and use their keen sense of smell to hunt for food.[16] They use their claws not only for digging and finding food but also for digging burrows for their dwellings, each of which is a single corridor the width of the animal's body. They have five clawed toes on their hind feet, and three to five toes with heavy digging claws on their fore feet. Armadillos have numerous cheek teeth which are not divided into premolars and molars, but usually have no incisors or canines. The dentition of the nine-banded armadillo is P 7/7, M 1/1 = 32.[17]

Body temperature

In common with other xenarthrans, armadillos, in general, have low body temperatures of 33–36 °C (91–97 °F) and low basal metabolic rates (40–60% of that expected in placental mammals of their mass). This is particularly true of types that specialize in using termites as their primary food source (for example, Priodontes and Tolypeutes).[18]

Skin

The armor is formed by plates of dermal bone covered in relatively small overlapping epidermal scales called "scutes" which are composed of keratin.[19] The skin of an armadillo can glow under ultraviolet light.[20] Most species have rigid shields over the shoulders and hips, with a number of bands separated by flexible skin covering the back and flanks. Additional armor covers the top of the head, the upper parts of the limbs, and the tail. The underside of the animal is never armored and is simply covered with soft skin and fur.[21] This armor-like skin appears to be an important defense for many armadillos, although most escape predators by fleeing (often into thorny patches, from which their armor protects them) or digging to safety. Only the South American three-banded armadillos (Tolypeutes) rely heavily on their armor for protection.

Defensive behavior

When threatened by a predator, Tolypeutes species frequently roll up into a ball. Other armadillo species cannot roll up because they have too many plates. When surprised, the North American nine-banded armadillo tends to jump straight in the air, which can lead to a fatal collision with the undercarriage or fenders of passing vehicles.[22]

Movement

Armadillos have short legs, but can move quite quickly. The nine-banded armadillo is noted for its movement through water,[23] which is accomplished via two different methods: it can walk underwater for short distances, holding its breath for as long as six minutes; or, to cross larger bodies of water, it can increase its buoyancy by swallowing air to inflate its stomach and intestines.[24]

Reproduction

Gestation lasts from 60 to 120 days, depending on species, although the nine-banded armadillo also exhibits delayed implantation, so the young are not typically born for eight months after mating. Most members of the genus Dasypus give birth to four monozygotic young (that is, identical quadruplets),[25] but other species may have typical litter sizes that range from one to eight. The young are born with soft, leathery skin which hardens within a few weeks. They reach sexual maturity in three to twelve months, depending on the species. Armadillos are solitary animals that do not share their burrows with other adults.[21]

Armadillos and humans

Science and education

Armadillos are often used in the study of leprosy, since they, along with mangabey monkeys, rabbits, and mice (on their footpads), are among the few known species that can contract the disease systemically. They are particularly susceptible due to their unusually low body temperature, which is hospitable to the leprosy bacterium, Mycobacterium leprae. (The leprosy bacterium is difficult to culture and armadillos have a body temperature of 34 °C (93 °F), similar to human skin.)[26] Humans can acquire a leprosy infection from armadillos by handling them or consuming armadillo meat.[27][28] Armadillos are a presumed vector and natural reservoir for the disease in Texas, Louisiana and Florida.[29][30] Prior to the arrival of Europeans in the late 15th century, leprosy was unknown in the New World. Given that armadillos are native to the New World, at some point they must have acquired the disease from old-world humans.[27][30]

The armadillo is also a natural reservoir for Chagas disease.[31]

The nine-banded armadillo also serves science through its unusual reproductive system, in which four genetically identical offspring are born, the result of one original egg.[32][33][34] Because they are always genetically identical, the group of four young provides a good subject for scientific, behavioral, or medical tests that need consistent biological and genetic makeup in the test subjects. This is the only reliable manifestation of polyembryony in the class Mammalia, and exists only within the genus Dasypus and not in all armadillos, as is commonly believed. Other species that display this trait include parasitoid wasps, certain flatworms, and various aquatic invertebrates.[33]

Even though they have a leathery, tough shell, Armadillos, (mainly Dasypus) are common roadkill due to their habit of jumping 3–4 ft vertically when startled, which puts them into collision with the underside of vehicles.[35] Wildlife enthusiasts are using the northward march of the armadillo as an opportunity to educate others about the animals, which can be a burrowing nuisance to property owners and managers.[32]

Culture

 
A traditional charango made of armadillo, today superseded by wooden charangos, in Museu de la Música de Barcelona

Armadillo shells have traditionally been used to make the back of the charango, an Andean lute instrument.

In certain parts of Central and South America, armadillo meat is eaten; it is a popular ingredient in Oaxaca, Mexico. During the Great Depression, Americans were known to eat armadillo, known begrudgingly as "Hoover hogs", a nod to the belief that President Herbert Hoover was responsible for the economic despair facing the nation at that time.[36][37]

A whimsical account of The Beginning of the Armadillos is one of the chapters of Rudyard Kipling's Just So Stories 1902 children's book.[38] The vocal and piano duo Flanders and Swann recorded a humorous song called "The Armadillo".[39]

Shel Silverstein wrote a two-line poem called "Instructions" on how to bathe an armadillo in his collection A Light in the Attic. The reference was "use one bar of soap, a whole lot of hope, and 72 pads of Brillo."[40]

See also

References

  1. ^ Mitchell, Kieren J.; Scanferla, Agustin; Soibelzon, Esteban; Bonini, Ricardo; Ochoa, Javier; Cooper, Alan (July 2016). "Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos". Molecular Ecology. 25 (14): 3499–3508. Bibcode:2016MolEc..25.3499M. doi:10.1111/mec.13695. hdl:11336/48521. ISSN 0962-1083. PMID 27158910. S2CID 3720645.
  2. ^ "armadillo, armadilla | Definición | Diccionario de la lengua española | RAE - ASALE". Archived from the original on 30 March 2023. Retrieved 4 April 2023.
  3. ^ "armadillo | Etymology, origin and meaning of armadillo by etymonline". www.etymonline.com. Archived from the original on 28 March 2023. Retrieved 28 March 2023.
  4. ^ Bourne, Julián; Díaz Dueñas, Mercedes (2019). "The Use of the Diminutive Suffixes -ito/a and -illo/a in the Spanish Translation of The Fifth Child by Doris Lessing". Hikma. 18 (1). University of Córdoba Press: 113–180. doi:10.21071/hikma.v18i1.11197. hdl:10396/19475. ISSN 1579-9794. S2CID 194628023.
  5. ^ Karttunen, Frances E. (1983). An Analytical Dictionary of Nahuatl. University of Oklahoma Press. p. 17. ISBN 978-0-8061-2421-6. View entry at "ayotoch" Archived 4 March 2016 at the Wayback Machine in Nahuatl Dictionary, by the Wired Humanities Projects, Stephanie Wood (ed.) Retrieved 2015-07-22.
  6. ^ FERREIRA, A.B.H. Novo Dicionário da Língua Portuguesa. Segunda edição. Rio de Janeiro: Nova Fronteira, 1986. p. 1 653
  7. ^ Chiaradia, Clóvis (2008). Dicionário de Palavras Brasileiras de Origem Indígena. São Paulo: Limiar. ISBN 9788588075337.
  8. ^ "quirquincho". Diccionario de la lengua española. Real Academia Española. Archived from the original on 7 March 2023. Retrieved 27 January 2023.
  9. ^ Billet, Guillaume; Hautier, Lionel; de Muizon, Christian; Valentin, Xavier (2011). "Oldest cingulate skulls provide congruence between morphological and molecular scenarios of armadillo evolution". Proceedings of the Royal Society. 278 (1719): 2791–7. doi:10.1098/rspb.2010.2443. PMC 3145180. PMID 21288952.
  10. ^ Slater, Graham J.; Cui, Pin; Forasiepi, Analía M.; Lenz, Dorina; Tsangaras, Kyriakos; Voirin, Bryson; de Moraes-Barros, Nadia; MacPhee, Ross D. E.; Greenwood, Alex D. (2016). "Evolutionary Relationships among Extinct and Extant Sloths: The Evidence of Mitogenomes and Retroviruses" (PDF). Genome Biology and Evolution. 8 (3): 607–621. doi:10.1093/gbe/evw023. ISSN 1759-6653. PMC 4824031. PMID 26878870.
  11. ^ Delsuc, Frédéric; Gibb, Gillian C.; Kuch, Melanie; Billet, Guillaume; Hautier, Lionel; Southon, John; Rouillard, Jean-Marie; Fernicola, Juan Carlos; Vizcaíno, Sergio F.; MacPhee, Ross D.E.; Poinar, Hendrik N. (2016). "The phylogenetic affinities of the extinct glyptodonts". Current Biology. 26 (4): R155–R156. Bibcode:2016CBio...26.R155D. doi:10.1016/j.cub.2016.01.039. hdl:11336/49579. PMID 26906483.
  12. ^ "Study finds relationship between glyptodonts, armadillos". AMNH. Archived from the original on 28 February 2016. Retrieved 22 February 2016.
  13. ^ a b Woodburne, M. O. (14 July 2010). "The Great American Biotic Interchange: Dispersals, Tectonics, Climate, Sea Level and Holding Pens". Journal of Mammalian Evolution. 17 (4): 245–264 (see p. 249). doi:10.1007/s10914-010-9144-8. PMC 2987556. PMID 21125025.
  14. ^ "Armadillos slinking their way into Indiana". TheIndyChannel. Associated Press. 7 June 2014. Archived from the original on 9 June 2014. Retrieved 16 June 2014.
  15. ^ "Armadillos have arrived in downstate Illinois and are heading north — yes, you might someday see an armadillo in your backyard". Chicago Tribune. 14 May 2022. Archived from the original on 17 May 2022. Retrieved 17 May 2022.
  16. ^ a b "Armadillos, Armadillo Pictures, Armadillo Facts". National Geographic. 12 March 2010. Archived from the original on 6 September 2011. Retrieved 22 July 2015.
  17. ^ Freeman, Patricia W.; Genoways, Hugh H. (December 1998). "Recent Northern Records of the Nine-banded Armadillo (Dasypodidae) in Nebraska". The Southwestern Naturalist. 43 (4): 491–504. Archived from the original on 11 June 2011. Retrieved 7 June 2010.
  18. ^ McNab, Brian K. (November 1980). "Energetics and the limits to the temperate distribution in armadillos". Journal of Mammalogy. 61 (4). American Society of Mammalogists: 606–627. doi:10.2307/1380307. JSTOR 1380307.
  19. ^ Yates, Paige (30 October 2020). "Armadillo". BiologyDictionary.net. Biology Dictionary. Archived from the original on 8 September 2021. Retrieved 8 September 2021. The plates of bone are covered in small overlapping epidermal scales called scutes, which are composed of keratin.
  20. ^ Travouillon, Kenny; Cooper, Christine Elizabeth; Bouzin, Jemmy; Umbrello, Linette; Lewis, Simon; Conversation, The. "From glowing cats to wombats, fluorescent mammals are much more common than you'd think". phys.org. Retrieved 6 October 2023.
  21. ^ a b Dickman, Christopher R. (1984). Macdonald, D. (ed.). The Encyclopedia of Mammals. New York: Facts on File. pp. 781–783. ISBN 978-0-87196-871-5.
  22. ^ "How high can a nine-banded armadillo jump?". Everyday Mysteries: Fun Science Facts from the Library of Congress. Library of Congress. 12 February 2009. Archived from the original on 6 December 2009. Retrieved 17 December 2009.
  23. ^ McDonough, Colleen M.; Loughry, W. J. (2013). The Nine-Banded Armadillo: A Natural History. University of Oklahoma Press. pp. 181–182. ISBN 978-0-8061-8921-5.
  24. ^ Vijayaraghavan, R. (2009). "Nine-banded Armadillo Dasypus novemcinctus Animal Model for Leprosy (Hansen's Disease)". Scandinavian Journal of Laboratory Animal Sciences. 36 (2): 167–176. Archived from the original on 23 January 2022. Retrieved 22 July 2015.
  25. ^ Bagatto, B.; Crossley, D. A.; Burggren, W. W. (1 June 2000). "Physiological variability in neonatal armadillo quadruplets: within- and between-litter differences". Journal of Experimental Biology. 159. 203 (11): 267–277. doi:10.1242/jeb.203.11.1733. PMID 10804163. Archived from the original on 15 February 2014. Retrieved 30 August 2012.
  26. ^ Truman, Richard (2005). "Leprosy in wild armadillos" (PDF). Leprosy Review. 76 (3): 198–208. doi:10.47276/lr.76.3.198. PMID 16248207. Archived (PDF) from the original on 9 October 2022. Retrieved 4 May 2017.
  27. ^ a b Harris, Gardiner (27 April 2011). "Armadillos Can Transmit Leprosy to Humans, Federal Studies Confirm". The New York Times. Archived from the original on 4 May 2011. Retrieved 3 May 2011.
  28. ^ Guiden, Mary (June 2018). "New evidence that wild armadillos spread leprosy to humans". Colorado State University. Retrieved 16 November 2023.
  29. ^ Sharma, Rahul; Singh, Pushpendra; Loughry, W.J.; Lockhart, J. Mitchell; Inman, W. Barry; Duthie, Malcolm S.; Pena, Maria T.; Marcos, Luis A.; Scollard, David M.; Cole, Stewart T.; Truman, Richard W. (1 December 2015). "Zoonotic Leprosy in the Southeastern United States". Emerging Infectious Diseases. 21 (12): 2127–2134. doi:10.3201/eid2112.150501. PMC 4672434. PMID 26583204.
  30. ^ a b Truman, Richard W.; Singh, Pushpendra; Sharma, Rahul; Busso, Philippe; Rougemont, Jacques; Paniz-Mondolfi, Alberto; Kapopoulou, Adamandia; Brisse, Sylvain; Scollard, David M.; Gillis, Thomas P.; Cole, Stewart T. (28 April 2011). "Probable Zoonotic Leprosy in the Southern United States". The New England Journal of Medicine. 364 (17). Waltham, MA: Massachusetts Medical Society: 1626–1633. doi:10.1056/NEJMoa1010536. PMC 3138484. PMID 21524213.
  31. ^ Yaeger, R. G. (March 1988). "The prevalence of Trypanosoma cruzi infection in armadillos collected at a site near New Orleans, Louisiana". The American Journal of Tropical Medicine and Hygiene. 38 (2): 323–326. doi:10.4269/ajtmh.1988.38.323. PMID 3128127.
  32. ^ a b Schaefer, Joseph M.; Hostetler, Mark E. (January 1998). "The Nine-banded Armadillo (Dasypus novemcinctus)". University of Florida, IFAS Extension. Archived from the original on 13 July 2001. Retrieved 17 December 2009.
  33. ^ a b Loughry, W.J; Prodohl, Paulo A; McDonough, Colleen M; Avise, John C. (May–June 1998). "Polyembryony in Armadillos" (PDF). American Scientist. 86 (3): 274–279. Bibcode:1998AmSci..86..274L. doi:10.1511/1998.3.274. S2CID 196608283. Archived (PDF) from the original on 9 October 2022.
  34. ^ Hamlett, G. W. D. (September 1933). "Polyembryony in the Armadillo: Genetic or Physiological?". The Quarterly Review of Biology. 8 (3): 348–358. doi:10.1086/394444. JSTOR 2808431. S2CID 86435985.
  35. ^ "How high can a nine-banded armadillo jump?". Library of Congress. Retrieved 31 August 2020.
  36. ^ "Armadillos as Food". armadillo-online.org. Archived from the original on 24 October 2019. Retrieved 21 November 2019.
  37. ^ "The Ordeal of Herbert Hoover, Part 2". National Archives. 15 August 2016. Archived from the original on 1 January 2020. Retrieved 21 November 2019.
  38. ^ Kipling, Rudyard (1902). "The Beginning of the Armadillos". Just So Stories. Macmillan. Archived from the original on 9 July 2021. Retrieved 6 July 2021.
  39. ^ The complete Flanders & Swann. International Music Publishers. 1996. OCLC 973628714 – via Open WorldCat.
  40. ^ Cornell University. College of Veterinary Medicine (1999). Cornell University College of Veterinary Medicine [student Yearbook]. College of Veterinary Medicine, Cornell University. p. 88.

Further reading

  NODES
ELIZA 1
HOME 1
Intern 1
iOS 1
languages 2
mac 7
Note 3
OOP 2
os 96
todo 11
web 1