Dan M. Granoff (born January 22, 1944) is an infectious disease physician-scientist who was named the 2014 Maurice Hilleman/Merck Laureate by the American Society for Microbiology for outstanding contributions to vaccine discovery and development.[1] Beginning in 2011, Granoff held the Clorox Foundation Endowed Chair and was director of the Center of Immunobiology and Vaccine Development at Children's Hospital Oakland Research Institute[2] (now known as University of California San Francisco (UCSF) Benioff Children's Hospital Oakland). His work increased understanding of basic mechanisms of human immunity to encapsulated bacteria, and furthered development of vaccines against Haemophilus influenzae type B (Hib)[3] and Neisseria meningitidis (also called the meningococcus).[4][5][6]

portrait of Dan Granoff in 2017, by Sarah Newman

Personal life

edit

Granoff was born in 1944 in New York City, NY,[7] He divides his time between San Francisco, California, and Carmel Valley, California, with his partner, Marjory A Kaplan,[8] a retired lawyer. He was married to Alice Baghdassarian Granoff, M.D.,[9] and divorced in 1985. They have two sons.

Education

edit

Granoff completed his bachelors and medical degrees at Johns Hopkins University, Baltimore Maryland.[2] He completed pediatric residency training at the Johns Hopkins Hospital, followed by a post-doctoral fellowship in pediatric infectious diseases at Case Western Reserve University School of Medicine, Cleveland Metropolitan General Hospital (now MetroHealth Medical Center).

Research

edit

Described below are some of Granoff’s most important research contributions.

Development of Haemophilus influenzae type b (Hib) polysaccharide and polysaccharide-protein conjugate vaccines

edit

In 1987, the first Hib conjugate vaccine, which used Hib capsular polysaccharide (called PRP) conjugated to diphtheria toxoid as the carrier protein, was licensed in the United States and recommended for the age group 18 to 60 months.[3] Granoff and colleagues were the first to test this vaccine in humans.[10] In subsequent studies with Dr. Trudy Virginia Noller Murphy then at Southwestern Medical School in Dallas TX, and Dr. Michael Osterholm, then at the Minnesota Department of Health, they demonstrated that the vaccine, called PRP-D,[3] not only decreased Hib disease in vaccinated children but also in children in the age group less than 18 months, which at the time was not being vaccinated.[11][12] This study was one of the first to suggest that introduction of a polysaccharide-protein conjugate vaccine could lead to "herd immunity",[13] now also called “community protection” or "community immunity").

Granoff and his colleagues also demonstrated an unexpected decrease in the presence of Hib in the noses and throats of healthy children who had been immunized with PRP-D, when compared to unvaccinated children or children who had been vaccinated with an earlier Hib vaccine containing only unconjugated polysaccharide.[14] This finding provided a basis for the observed community protection against Hib disease in unvaccinated infants[15] (because of decreased exposure).[3]

Insights into the molecular basis of human anticapsular immunity

edit

In 1986 Granoff and his colleagues reported that a single injection of a modified Hib conjugate vaccine that used an meningococcal outer membrane complex as its carrier protein elicited a protective antibody response in two month-old infants.[16] This result was unexpected since scientists at the time believed that two-month-olds did not have mature B cells capable of responding to polysaccharide antigens.[17][18] Granoff’s findings, which were subsequently confirmed by others,[5][19] proved that B cells, with the appropriate rearranged genes, were present at age two months and were activated by a single injection of this Hib polysaccharide conjugate vaccine.[20] The presence of a meningococcal porin protein (called PorB) as part of the carrier protein likely provided unique adjuvant and immunostimulatory signals.[21] The adjuvant activity helps explain the unique ability of this Hib vaccine (now called PedVaxHib) to be immunogenic in 2 month olds after a single injection.

With Dr. Alexander H. Lucas, Granoff also used idiotype analysis to investigate variable region gene diversity in human antibodies for Hib polysaccharide.[22] They found dramatic changes in gene utilization by age of vaccination, and different Hib conjugate vaccine types. Collectively these studies contributed to making anti-Hib capsular antibodies one of the best understood human antibody systems at a molecular level.[23][24]

A meningococcal serogroup A conjugate vaccine for Sub-Saharan Africa

edit

For much of the 20th century, Sub-Saharan Africa experienced large epidemics of meningococcal disease caused by serogroup A strains.[25] By the mid-1990s, three vaccine manufacturers were developing meningococcal conjugate vaccines against serogroup C strains in response to public health concerns in the United Kingdom resulting from approximately 10,000 cases and 1000 deaths during the previous decade.[26] However, because of poor prospects for a profit, there was little interest by commercial manufacturers to develop a serogroup group A meningococcal conjugate vaccine for use in Sub-Saharan Africa where, during the same time period, there were more than 700,000 cases and 100,000 deaths.[25] In 1999, Granoff, working with colleagues at the World Health Organization, proposed developing and manufacturing a low cost, meningococcal vaccine for Africa using a public–private partnership.[26][27] With funding by the Bill and Melinda Gates Foundation, and under the leadership of Dr. Marc LaForce, a low cost, vaccine, called MenAfriVac, was developed and introduced in Sub-Saharan Africa in 2010.[28] By 2015, more than 150 million people had been immunized. The vaccine has been highly effective in preventing group A epidemics and helped establish herd immunity.[28]

Meningococcal vaccines that _target serogroup B strains

edit

The polysaccharide protein conjugate vaccine approach used to develop successful Hib vaccines was subsequently applied to develop vaccines for prevention of meningococcal disease, a severe and often deadly infection of infants and teenagers. These efforts resulted in several licensed conjugate vaccines for prevention of disease caused by meningococcal strains with capsular groups designated A, C, Y and W . However, this approach was not feasible for a vaccine against group B strains, which were the most common cause of meningococcal disease in infants in North America and Europe.[5] The reason was that the group B capsule shares structural features that are similar to sugars present in human tissues.[29] Thus, stimulating antibodies to this bacterial capsule was difficult and if successful risked eliciting autoantibodies that could give rise to autoimmune disease.[5] Granoff, collaborating with Sanjay Ram's Laboratory, then at Boston University School of Medicine, and their colleagues identified a meningococcal lipoprotein that was critical for the ability of the bacteria to survive in human serum.[30][31] The protein bound human complement factor H (FH), which is present in high concentrations in human serum, and down-regulates complement activation. The lipoprotein, which had been previously identified as a vaccine antigen of unknown function by two groups, had been designated GNA1870 by one group[32] or Lp2086 by another.[33] To reflect its function, Granoff and Ram renamed the lipoprotein "Factor H binding protein" or "FHbp". FHbp is now the main or sole antigen in the two meningococcal group B vaccines licensed in the U.S., Europe and in other areas of the world.[5] In immunized humans, however, the FHbp antigen forms a complex with human FH.[34] With Drs. Peter Beernink and Sanjay Ram, Granoff showed that FH binding to FHbp decreased protective antibody responses.[35][36] Beernink and Granoff went on to create mutant FHbp vaccines with amino acid substitutions that decreased FH binding, which elicited greater protective antibody responses than antigens that bound FH.[37] They showed that currently licensed FHbp-based meningococcal B vaccines can be improved by introducing these amino acid substitutions. Granoff and his colleagues also investigated over-expressing FHbp in meningococcal native outer membrane vesicles (NOMV) prepared from mutant meningococcal strains.[38] In mice and infant macaque monkeys, the mutant meningococcal NOMV vaccine combined with over-expressing mutant low FH-binding FHbp elicited much higher and broader protective antibody responses than control vaccines, including a currently licensed one.[39][40]

Publications

edit

Granoff authored or co-authored more than 225 research articles in peer-reviewed journals and review articles,[41] and multiple textbook chapters including recent chapters on meningococcal vaccines published in the 7th and 8th editions of Plotkin’s Vaccines.[5] Granoff also co-edited a textbook on Hib vaccines with Dr. Ronald D Ellis.[42]

Academic and Business career

edit

Granoff served as Professor of Pediatrics and Director of the Division of Pediatric Infectious Diseases at Washington University School of Medicine and St. Louis Children’s Hospital from 1979 to 1993.[2] In 1993, he became Executive Director of Clinical Vaccine Research at Chiron Corporation (Emeryville CA) with a joint appointment as a Scientist at Children’s Hospital Oakland Research Institute[2](Currently UCSF Benioff Children’s Hospital)]. His team at Chiron was responsible for clinical development of the first adjuvanted influenza vaccine,[43] and a meningococcal serogroup C conjugate vaccine,[44][3] which was used to control deadly outbreaks in the United Kingdom.[45] In 1995 Granoff became Vice President of Scientific Affairs.[2] He left Chiron in 1998 to become a Senior Scientist at Children’s Hospital Oakland Research Institute. Beginning in 2011, Granoff held the Clorox Foundation Endowed Chair and was Director of the Center of Immunobiology and Vaccine Development until his retirement in 2019.

Editorship

edit

Granoff served as associate editor of the journal, Pediatric Research from 1982 to 1988[46] and is a member of the editorial boards of Human Vaccines & Immunotherapeutics[47] and the journal Vaccine.[48] He is a member on the editorial advisory board of the journal, Clinical Infectious Diseases.[49]

Recognition by scientific societies

edit

The American Society for Clinical Investigation (ASCI): Elected to membership in 1987[50]

The American Academy of Microbiology: Elected as a Fellow in 2010[51]

The Infectious Diseases Society of America and the Pediatric Infectious Diseases Society: Elected as a Fellow to both organizations.

Awards

edit

Patents

edit

Granoff is inventor or co-inventor on multiple US and international patents including Patent Nos. US6,936,261; US8,968,748; US9,034,345; US9,439,957; US10,857,221; and US10,905,754 and others.[55]

References

edit
  1. ^ a b "Past ASM Awardees" (PDF). American Society for Microbiology.
  2. ^ a b c d e Granoff, Dan M. (2013-05-14). "Portrait: Coincidences, convergences and opportunities". Human Vaccines & Immunotherapeutics. 9 (5): 945–949. doi:10.4161/hv.25151. ISSN 2164-5515. PMC 3899160. PMID 23807081.
  3. ^ a b c d e Fitzwater, Sean Patrick (2023). Orenstein, Walter A.; Offit, Paul A.; Edwards, Kathryn M.; Plotkin, Stanley A. (eds.). Plotkin's vaccines (8th ed.). Philadelphia, PA: Elsevier. pp. 348–364. ISBN 978-0-323-79058-1.
  4. ^ Stephens, David S; Greenwood, Brian; Brandtzaeg, Petter (June 30, 2007). "Epidemic meningitis, meningococcaemia, and Neisseria meningitidis". The Lancet. 369 (9580): 2196–2210. doi:10.1016/S0140-6736(07)61016-2. PMID 17604802. S2CID 16951072.
  5. ^ a b c d e f Stephens, David S; Granoff, Dan M; Pollard, Andrew J; Harrison, Lee H (2023). Orenstein, Walter A; Offit, Paul A; Edwards, Kathryn M.; Plotkin, Stanley A (eds.). Plotkin's Vaccines (8th ed.). Elsevier. pp. 560–710. ISBN 9780323790581.
  6. ^ Soeters, H. M.; Blain, A.; Pondo, T.; Doman, B.; Farley, M. M.; Harrison, L. H.; Lynfield, R.; Miller, L.; Petit, S.; Reingold, A.; Schaffner, W.; Thomas, A.; Zansky, S. M.; Wang, X.; Briere, E. C. (2018). "Current Epidemiology and Trends in Invasive Haemophilus influenzae Disease-United States, 2009-2015". Clinical Infectious Diseases. 67 (6): 881–889. doi:10.1093/cid/ciy187. PMC 6181225. PMID 29509834.
  7. ^ Granoff, Dan M (2013). "Portrait: coincidences, convergences and opportunities". Human Vaccines & Immunotherapeutics. 9 (5): 945–949. doi:10.4161/hv.25151. PMC 3899160. PMID 23807081.
  8. ^ "Marjory Ann Kaplan". All California Attorneys.
  9. ^ "Alice Granoff Obituary - Tucson, AZ". Dignity Memorial.
  10. ^ Granoff, Dan M.; Boies, Eyla G.; Munson, Robert S. (1984). "Immunogenicity of Haemophilus influenzae type b polysaccharide—diphtheria toxoid conjugate vaccine in adults". The Journal of Pediatrics. 105 (1): 22–27. doi:10.1016/S0022-3476(84)80350-9. PMID 6610736.
  11. ^ Murphy, T. V.; White, K. E.; Pastor, P.; Gabriel, L.; Medley, F.; Granoff, D. M.; Osterholm, M. T. (1993). "Declining incidence of Haemophilus influenzae type b disease since introduction of vaccination". JAMA. 269 (2): 246–248. doi:10.1001/jama.1993.03500020080036. PMID 8417244.
  12. ^ Peltola, Heikki (2000). "Worldwide Haemophilus influenzae Type b Disease at the Beginning of the 21st Century: Global Analysis of the Disease Burden 25 Years after the Use of the Polysaccharide Vaccine and a Decade after the Advent of Conjugates". Clinical Microbiology Reviews. 13 (2): 302–317. doi:10.1128/CMR.13.2.302. PMC 100154. PMID 10756001.
  13. ^ Reid, D.; Goldberg, D. (2012-01-01), Greenwood, David; Barer, Mike; Slack, Richard; Irving, Will (eds.), "68 - Epidemiology and control of community infections", Medical Microbiology (Eighteenth Edition), Edinburgh: Churchill Livingstone, pp. 708–717, doi:10.1016/b978-0-7020-4089-4.00082-2, ISBN 978-0-7020-4089-4, PMC 7150061
  14. ^ Murphy, Trudy V.; Pastor, Patricia; Medley, Francinne; Osterholm, Michael T.; Granoff, Dan M. (1993). "Decreased Haemophilus colonization in children vaccinated with Haemophilus influenzae type b conjugate vaccine". The Journal of Pediatrics. 122 (4): 517–523. doi:10.1016/S0022-3476(05)83529-2. PMID 8463894.
  15. ^ Takala, A. K.; Eskola, J.; Leinonen, M.; Kayhty, H.; Nissinen, A.; Pekkanen, E.; Makela, P. H. (1991). "Reduction of Oropharyngeal Carriage of Haemophilus influenzae Type b (Rib) in Children Immunized with an Rib Conjugate Vaccine". Journal of Infectious Diseases. 164 (5): 982–986. doi:10.1093/infdis/164.5.982. PMID 1940479.
  16. ^ Einhorn, Menachems; Anderson, Edwinl; Weinberg, Geoffreya; Granoff, Pauld; Granoff, Danm (1986). "Immunogenicity in Infants of Haemophilus Influenzae Type B Polysaccharide in a Conjugate Vaccine with Neisseria Meningitidis Outer-Membrane Protein". The Lancet. 328 (8502): 299–302. doi:10.1016/s0140-6736(86)90001-2. PMID 2874327. S2CID 24937332.
  17. ^ Davie, Joseph M (1982). Sell, Sarah H; Wright, Peter F (eds.). Haemophilus Influenzae: Epidemiology, Immunology, and Prevention of Disease. Elsevier Biomedical. pp. 129–133. ISBN 978-0444006837.
  18. ^ Paul, William L (1982). Sell, Sarah H.; Wright, Peter F.; Vanderbilt University; Tennessee (eds.). Haemophilus influenzae: epidemiology, immunology, and prevention of disease. New York: Elsevier Biomedical. pp. 121–127. ISBN 978-0-444-00683-7.
  19. ^ Ahonkhai, V.I.; Lukacs, L.J.; Jonas, L.C.; Calandra, G.B. (1991). "Clinical experience with PedvaxHIB, a conjugate vaccine of Haemophilus influenzae type b polysaccharide—Neisseria meningitidis outer membrane protein". Vaccine. 9: S38–S41. doi:10.1016/0264-410X(91)90180-E. PMID 1891956.
  20. ^ Lucas, A. H.; Azmi, F. H.; Mink, C. M.; Granoff, D. M. (1993). "Age-dependent V region expression in the human antibody response to the Haemophilus influenzae type b polysaccharide". Journal of Immunology. 150 (5): 2056–2061. doi:10.4049/jimmunol.150.5.2056. PMID 8436834.
  21. ^ Platt, Andrew; MacLeod, Heather; Massari, Paola; Liu, Xiuping; Wetzler, Lee (2013-12-11). "In Vivo and In Vitro Characterization of the Immune Stimulating Activity of the Neisserial Porin PorB". PLOS ONE. 8 (12): e82171. Bibcode:2013PLoSO...882171P. doi:10.1371/journal.pone.0082171. ISSN 1932-6203. PMC 3859593. PMID 24349212.
  22. ^ Lucas, A. H.; Granoff, D. M. (1990). "A major crossreactive idiotype associated with human antibodies to the Haemophilus influenzae b polysaccharide. Expression in relation to age and immunoglobulin G subclass". Journal of Clinical Investigation. 85 (4): 1158–1166. doi:10.1172/JCI114548. PMC 296547. PMID 2318971.
  23. ^ Reason, D. C.; O'Connor, A. P.; Lucas, A. H. (2001). "Structural determinants of the human idiotype HibId-1". Journal of Molecular Recognition. 14 (6): 393–400. doi:10.1002/jmr.548. PMID 11757072. S2CID 41958642.
  24. ^ Lucas, A. H.; McLean, G. R.; Reason, D. C.; O'Connor, A. P.; Felton, M. C.; Moulton, K. D. (2003). "Molecular ontogeny of the human antibody repertoire to the Haemophilus influenzae type B polysaccharide: Expression of canonical variable regions and their variants in vaccinated infants". Clinical Immunology (Orlando, Fla.). 108 (2): 119–127. doi:10.1016/s1521-6616(03)00094-9. PMID 12921758.
  25. ^ a b Greenwood, Brian (1999). "Meningococcal meningitis in Africa". Transactions of the Royal Society of Tropical Medicine and Hygiene. 93 (4): 341–353. doi:10.1016/S0035-9203(99)90106-2. PMID 10674069.
  26. ^ a b Jódar, Luis; Laforce, F Marc; Ceccarini, Costante; Aguado, Teresa; Granoff, Dan M. (2003). "Meningococcal conjugate vaccine for Africa: A model for development of new vaccines for the poorest countries". The Lancet. 361 (9372): 1902–1904. doi:10.1016/s0140-6736(03)13494-0. PMID 12788589. S2CID 13260831.
  27. ^ "Fighting a Third World Menace". March 24, 2004.
  28. ^ a b Aguado, M. T.; Jodar, L.; Granoff, D.; Rabinovich, R.; Ceccarini, C.; Perkin, G. W. (2015). "From Epidemic Meningitis Vaccines for Africa to the Meningitis Vaccine Project". Clinical Infectious Diseases. 61 (Suppl 5): S391-5. doi:10.1093/cid/civ593. PMC 4639495. PMID 26553665.
  29. ^ Finne, J.; Bitter-Suermann, D.; Goridis, C.; Finne, U. (1987-06-15). "An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues". Journal of Immunology. 138 (12): 4402–4407. doi:10.4049/jimmunol.138.12.4402. ISSN 0022-1767. PMID 3108388.
  30. ^ Granoff, D. M.; Welsch, J. A.; Ram, S. (2009). "Binding of complement factor H (FH) to Neisseria meningitidis is specific for human fH and inhibits complement activation by rat and rabbit sera". Infection and Immunity. 77 (2): 764–769. doi:10.1128/IAI.01191-08. PMC 2632036. PMID 19047406.
  31. ^ Madico, G.; Welsch, J. A.; Lewis, L. A.; McNaughton, A.; Perlman, D. H.; Costello, C. E.; Ngampasutadol, J.; Vogel, U.; Granoff, D. M.; Ram, S. (2006). "The meningococcal vaccine candidate GNA1870 binds the complement regulatory protein factor H and enhances serum resistance". Journal of Immunology. 177 (1): 501–510. doi:10.4049/jimmunol.177.1.501. PMC 2248442. PMID 16785547.
  32. ^ Pizza, Mariagrazia; Scarlato, Vincenzo; Masignani, Vega; Giuliani, Marzia Monica; Aricò, Beatrice; Comanducci, Maurizio; Jennings, Gary T.; Baldi, Lucia; Bartolini, Erika; Capecchi, Barbara; Galeotti, Cesira L.; Luzzi, Enrico; Manetti, Roberto; Marchetti, Elisa; Mora, Marirosa (2000-03-10). "Identification of Vaccine Candidates Against Serogroup B Meningococcus by Whole-Genome Sequencing". Science. 287 (5459): 1816–1820. Bibcode:2000Sci...287.1816.. doi:10.1126/science.287.5459.1816. ISSN 0036-8075. PMID 10710308. S2CID 43349049.
  33. ^ Fletcher, Leah D.; Bernfield, Liesel; Barniak, Vicki; Farley, John E.; Howell, Alan; Knauf, Melissa; Ooi, Peggy; Smith, Robert P.; Weise, Paige; Wetherell, Mike; Xie, Xiaoling; Zagursky, Robert; Zhang, Ying; Zlotnick, Gary W. (2004). "Vaccine Potential of the Neisseria meningitidis 2086 Lipoprotein". Infection and Immunity. 72 (4): 2088–2100. doi:10.1128/IAI.72.4.2088-2100.2004. ISSN 0019-9567. PMC 375149. PMID 15039331.
  34. ^ Granoff, Dan M. (2014). "Improving Safety and Efficacy of Meningococcal Vaccines". Microbe Magazine. 9 (8): 321–327. doi:10.1128/microbe.9.321.1.
  35. ^ Beernink, P. T.; Shaughnessy, J.; Braga, E. M.; Liu, Q.; Rice, P. A.; Ram, S.; Granoff, D. M. (2011). "A meningococcal factor H binding protein mutant that eliminates factor H binding enhances protective antibody responses to vaccination". Journal of Immunology. 186 (6): 3606–3614. doi:10.4049/jimmunol.1003470. PMC 3098282. PMID 21325619.
  36. ^ Granoff, D. M.; Costa, I.; Konar, M.; Giuntini, S.; Van Rompay, K. K.; Beernink, P. T. (2015). "Binding of Complement Factor H (FH) Decreases Protective Anti-FH Binding Protein Antibody Responses of Infant Rhesus Macaques Immunized with a Meningococcal Serogroup B Vaccine". The Journal of Infectious Diseases. 212 (5): 784–792. doi:10.1093/infdis/jiv081. PMC 4539902. PMID 25676468.
  37. ^ Granoff, D. M.; Giuntini, S.; Gowans, F. A.; Lujan, E.; Sharkey, K.; Beernink, P. T. (2016). "Enhanced protective antibody to a mutant meningococcal factor H-binding protein with low-factor H binding". JCI Insight. 1 (14): e88907. doi:10.1172/jci.insight.88907. PMC 5033880. PMID 27668287.
  38. ^ Hou, V. C.; Koeberling, O.; Welsch, J. A.; Granoff, D. M. (2005). "Protective antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed genome-derived neisserial antigen 1870". The Journal of Infectious Diseases. 192 (4): 580–590. doi:10.1086/432102. PMC 2373260. PMID 16028126.
  39. ^ Beernink, P. T.; Vianzon, V.; Lewis, L. A.; Moe, G. R.; Granoff, D. M. (2019). "A Meningococcal Outer Membrane Vesicle Vaccine with Overexpressed Mutant FHBP Elicits Higher Protective Antibody Responses in Infant Rhesus Macaques than a Licensed Serogroup B Vaccine". mBio. 10 (3). doi:10.1128/mBio.01231-19. PMC 6581866. PMID 31213564.
  40. ^ Beernink, P. T.; Shaughnessy, J.; Pajon, R.; Braga, E. M.; Ram, S.; Granoff, D. M. (2012). "The effect of human factor H on immunogenicity of meningococcal native outer membrane vesicle vaccines with over-expressed factor H binding protein". PLOS Pathogens. 8 (5): e1002688. doi:10.1371/journal.ppat.1002688. PMC 3349754. PMID 22589720.
  41. ^ "Dan Granoff". scholar.google.com. Retrieved 2024-03-10.
  42. ^ Ellis, Ronald W.; Granoff, Dan M. (12 May 1994). Development and Clinical Uses of Haemophilus B Conjugate Vaccines. Taylor & Francis. ISBN 0-8247-9186-X.
  43. ^ De Donato, S.; Granoff, D.; Minutello, M.; Lecchi, G.; Faccini, M.; Agnello, M.; Senatore, F.; Verweij, P.; Fritzell, B.; Podda, A. (1999). "Safety and immunogenicity of MF59-adjuvanted influenza vaccine in the elderly". Vaccine. 17 (23–24): 3094–3101. doi:10.1016/s0264-410x(99)00138-3. PMID 10462245.
  44. ^ Jones, D. H. (2001). "Menjugate (Chiron)". Current Opinion in Investigational Drugs. 2 (1): 47–49. PMID 11527011.
  45. ^ Miller, E.; Salisbury, D.; Ramsay, M. (2001). "Planning, registration, and implementation of an immunisation campaign against meningococcal serogroup C disease in the UK: A success story". Vaccine. 20 (Suppl 1): S58-67. doi:10.1016/s0264-410x(01)00299-7. PMID 11587814.
  46. ^ "Pediatric Research". Nature. April 15, 2023.
  47. ^ "Human Vaccines & Immunotherapeutics Editorial Board".
  48. ^ "Editorial board - Vaccine | ScienceDirect.com by Elsevier". www.sciencedirect.com.
  49. ^ "Editorial Board". Oxford Academic.
  50. ^ "Home". The American Society for Clinical Investigation.
  51. ^ "Search - ASM Academy Fellow Directory". myasm.asm.org.
  52. ^ "Member Search". Alpha Omega Alpha.
  53. ^ "Stanley A. Plotkin Award – PIDS Foundation". PIDS Foundation. Retrieved 2023-10-04.
  54. ^ "Past Alumni Award Winners". Hopkins Medicine.
  55. ^ "Dan M. Granoff Inventions, Patents and Patent Applications - Justia Patents Search". patents.justia.com. Retrieved 2024-07-03.
  NODES
COMMUNITY 4
INTERN 1
Note 1
Project 1