Spherical_Lens.gif (543 × 543 pixels, file size: 6.8 MB, MIME type: image/gif, looped, 92 frames, 9.2 s)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionSpherical Lens.gif |
English: Visualization of light through a spherical lens, as a function of the radii of curvature of the two facets. Notice that we are far from the "thin lens" approximation. |
Date | |
Source | https://twitter.com/j_bertolotti/status/1392058658520027138 |
Author | Jacopo Bertolotti |
Permission (Reusing this file) |
https://twitter.com/j_bertolotti/status/1030470604418428929 |
Mathematica 12.0 code
\[Lambda]0 = 1.; k0 = N[(2 \[Pi])/\[Lambda]0]; (*The wavelength in vacuum is set to 1, so all lengths are now in units of wavelengths*)
\[Delta] = \[Lambda]0/15; \[CapitalDelta] = 40*\[Lambda]0; (*Parameters for the grid*)
\[Sigma] = 10 \[Lambda]0; (*width of the gaussian beam*)
sourcef[x_, y_] := E^(-(x^2/(2 \[Sigma]^2))) E^(-((y + \[CapitalDelta]/2)^2/(2 (\[Lambda]0/2)^2))) E^(I k0 y);
\[Phi]in = Table[Chop[sourcef[x, y]], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/ 2, \[Delta]}]; (*Discretized source*)
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)
imn = Table[ Chop[5 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d))], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}]; (*Imaginary part of the refractive index (used to emulate absorbing boundaries)*)
dim = Dimensions[\[Phi]in][[1]];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)
ycenter = Map[y0 /. # &, FullSimplify[Solve[(x1)^2 + (y1 - y0)^2 == r^2, {y0}]][[All, 1, All]] ];
surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]}];
frames1 = Table[
ren = Table[ If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], n0, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = ren + I imn;
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[ SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[ Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}],
ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
](*Plot everything*)
, {n0, 1, 2.5, 0.24}];
surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(
2 (c + \[CapitalDelta]/4))} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]}];
frames2 = Table[
ren = Table[ If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = ren + I imn;
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[ SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[
Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True,
Frame -> False, PlotRange -> {0, 1}],ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
](*Plot everything*)
, {c, -(\[CapitalDelta]/4) + 0.01, 0, \[CapitalDelta]/(20*3)}];
surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 5/8 \[CapitalDelta]} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(2 (c + \[CapitalDelta]/4))}];
frames3 = Table[
ren = Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = ren + I imn;
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}],
ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
](*Plot everything*)
, {c, -(\[CapitalDelta]/4) + 0.01, -\[CapitalDelta]/10, \[CapitalDelta]/(20*3)}];
surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(2 (c + \[CapitalDelta]/4))} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 109/120 \[CapitalDelta]}];
frames4 = Table[
ren = Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = ren + I imn;
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}], ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
](*Plot everything*)
, {c, 0, -(\[CapitalDelta]/4) + 0.01, -(\[CapitalDelta]/(20*3))}];
surface2[x_] := Evaluate[Evaluate[((Sqrt[r^2 - (x)^2] + y0) /. {y0 -> ycenter[[1]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> 100 \[CapitalDelta]} ] ];
surface1[x_] := Evaluate[((-Sqrt[r^2 - (x)^2] + y0 - 1) /. {y0 -> ycenter[[2]]}) /. {y1 -> -(\[CapitalDelta]/4), x1 -> \[CapitalDelta]/2, r -> (c^2 + (c \[CapitalDelta])/2 + (5 \[CapitalDelta]^2)/16)/(2 (c + \[CapitalDelta]/4))}];
frames5 = Table[
ren = Table[If[y < Re@Evaluate[surface2[x]] && y > Re@surface1[x], 2.5, 1], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
n = ren + I imn;
b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
\[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
ImageAdd[
ArrayPlot[Transpose[(Abs[\[Phi]in + \[Phi]s]/Max[Abs[\[Phi]in + \[Phi]s]])^2][[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]], ColorFunction -> "AvocadoColors" , DataReversed -> True, Frame -> False, PlotRange -> {0, 1}], ArrayPlot[Transpose@Re[(n - 1)/5] , DataReversed -> True , ColorFunctionScaling -> False, ColorFunction -> GrayLevel, Frame -> False]
](*Plot everything*)
, {c, -\[CapitalDelta]/10, -(\[CapitalDelta]/4) + 0.01, -(\[CapitalDelta]/(20*3))}];
ListAnimate[ Flatten[ Join[Table[frames1[[1]], {5}], frames1, Table[frames2[[1]], {5}], frames2, Table[frames3[[1]], {5}], frames3, Table[frames4[[1]], {5}], frames4, Table[frames5[[1]], {5}], frames5, Table[frames1[[-1]], {5}], Reverse@frames1]] ]
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication. | |
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse |
Items portrayed in this file
depicts
some value
11 May 2021
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 09:19, 12 May 2021 | 543 × 543 (6.8 MB) | Berto | Uploaded own work with UploadWizard |
File usage
The following page uses this file:
Metadata
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it.
If the file has been modified from its original state, some details may not fully reflect the modified file.
GIF file comment | Created with the Wolfram Language : www.wolfram.com |
---|
Retrieved from "https://en.wikipedia.org/wiki/File:Spherical_Lens.gif"