The 6L 50 (and similar 6L 45) is a 6-speed longitudinally-mounted automatic transmission produced by General Motors. It is very similar in design to the larger GM 6L 80 and 6L 90, and is produced at GM Powertrain plants in Toledo, Ohio; Silao, Guanajuato, Mexico; and by the independent Punch Powerglide company in Strasbourg, France.

6L 45 · 6L 50 · 6L 80 · 6L 90
A Hydra-Matic 6L80 transmission at the Ypsilanti Automotive Heritage Museum
Overview
ManufacturerGeneral Motors
Production2005–present
Body and chassis
Class6-Speed Longitudinal
Automatic Transmission
RelatedAisin AWTF-80 SC
Ford 6R
ZF 6HP
Chronology
Predecessor4L60-E · 4L65-E
5L40-E · 5L50
Successor8L 45 · 8L 90

This transmission features clutch to clutch shifting, eliminating the bands used on older transmission designs. The 6L 50 debuted for the 2007 model year on the V8-powered versions of the Cadillac STS sedan and Cadillac SRX crossover, and replaces the 5L40-E and 5L50 in GM's lineup. The 6L 45 version is used in certain BMW vehicles and the Cadillac ATS, as part of either rear-wheel drive and all-wheel drive powertrains.

The 6L 80 (and similar 6L 90) is a 6-speed automatic transmission built by General Motors at its Willow Run Transmission plant in Ypsilanti, MI. It was introduced in late 2005, and is very similar in design to the smaller 6L 45 and 6L 50, produced at GM Powertrain in Strasbourg, France.

It features clutch to clutch shifting, eliminating the one-way clutches used on older transmission designs. In February 2006 GM announced that it would invest $500 million to expand the Toledo Transmission plant in Toledo, Ohio to produce the 6L 80 in 2008. Torque rating 6L 80 590 lb⋅ft (800 N⋅m), 6L 90 885 lb⋅ft (1,200 N⋅m) and is adaptable to rear-wheel drive and all-wheel drive applications.

Gear Ratios[a]
Gear
Model
R 1 2 3 4 5 6 Total
Span
Span
Center
Avg.
Step
Compo-
nents
6L 45 · 6L 50 −3.200 4.065 2.371 1.551 1.157 0.853 0.674 6.035 1.655 1.433 3 Gearsets
2 Brakes
3 Clutches
6L 80 · 6L 90 −3.064 4.027 2.364 1.532 1.152 0.852 0.667 6.040 1.638 1.433
ZF 6HP All · 2000[b] −3.403 4.171 2.340 1.521 1.143 0.867 0.691 6.035 1.698 1.433
  1. ^ Differences in gear ratios have a measurable, direct impact on vehicle dynamics, performance, waste emissions as well as fuel mileage
  2. ^ for comparison purposes only

Specifications

edit

Basic concept

edit

A conventional planetary gearset and a compound Ravigneaux gearset is combined in a Lepelletier gear mechanism,[1] to reduce both the size and weight. It was first realized with the 6HP from ZF Friedrichshafen. Like all transmissions realized with Lepelletier transmissions, the 6L also dispenses with the use of the direct gear ratio, making it one of the very few automatic transmission concepts without such a ratio.

It also has the capability to achieve torque converter lock-up on all 6 forward gears, and disengage it completely when at a standstill, significantly closing the fuel efficiency gap between automatic and manual transmissions.

Technical data

edit
Features
6L 45 · MYA · 6L 50 · MYB 6L 80 · MYC · 6L 90 · MYD
Input Capacity
Maximum engine power 315 bhp (235 kW) 555 bhp (414 kW)
Maximum gearbox torque 450 N⋅m (332 lb⋅ft)
480 N⋅m (354 lb⋅ft)
800 N⋅m (590 lb⋅ft)
1,200 N⋅m (885 lb⋅ft)
Maximum shift speed 7,000/min 6,200/min
Vehicle
Maximum Validated Weight
Gross Vehicle Weight · GVW
5,000 lb (2,270 kg)
6,610 lb (3,000 kg)
15,000 lb (6,800 kg)
Maximum Validated Weight
Gross Curb
Vehicle Weight · GCVW
12,500 lb (5,670 kg) 21,000 lb (9,530 kg)
Gearbox
7-position quadrant P · R · N · D · X · X · X[a]
Case material Die cast aluminum
Shift pattern (2) 3-way on/off solenoids
Shift quality 5 variable bleed solenoid
Torque converter clutch Variable Bleed Solenoid ECCC
Converter size 240 mm (9.45 in) 258 mm (10.16 in)
Fluid type DEXRON VI
Fluid capacity 9.1 kg with 258 & 300 mm
Available Control Features
Shift Patterns Multiple (Selectable)
Driver Shift Control Tap Up · Tap Down
Shifting Enhanced Performance Algorithm Shifting (PAS)
Additional Modes Tow & Haul Mode (Selectable)
Engine Torque Management On All Shifts
Shift Control Altitude & Temperature Compensation
Adaptive Shift Time
Neutral Idle
Reverse Lockout
Automatic Grade Braking
Additional Features
Control OBDII · EOBD
Integral Electro/Hydraulic Controls Module (Tehcm)
Control Interface Protocol – GMLAN
The transmission control module (TCM)
is built into the solenoid pack/housing
Assembly sites GMPT[b] Strasbourg · France
GMPT[b] Toledo · Ohio · USA
GMPT[b] Silao · Mexico
  1. ^ X: available calibratable range position
  2. ^ a b c General Motors Powertrain
Gear Ratios
With Assessment[a][b] Planetary Gearset: Teeth[c]
Lepelletier Gear Mechanism
Count Total[d]
Center[e]
Avg.[f]
Simple Ravigneaux
Model
Type
Version
First Delivery
S1[g]
R1[h]
S2[i]
R2[j]
S3[k]
R3[l]
Brakes
Clutches
Ratio
Span
Gear
Step[m]
Gear
Ratio
R
 
1
 
2
 
3
 
4
 
5
 
6
 
Step[m]  [n]    [o]        
Δ Step[p][q]        
Shaft
Speed
             
Δ Shaft
Speed[r]
             
6L 45 · MYA
6L 50 · MYB
500 N⋅m (369 lb⋅ft)
2005
49
89
37
47
47
97
2
3
6.0346
1.6548
1.4326[m]
Gear
Ratio
−3.2001[n]
 
4.0650
 
2.3712[o][q]
 
1.5506
 
1.1567[q][r]
 
0.8532
 
0.6736
 
Step 0.7872[n] 1.0000 1.7143[o] 1.5293 1.3406 1.3557 1.2662
Step 2[p] 1.1210[q] 1.1408 0.9889[q] 1.0703
Speed -1.2703 1.0000 1.7143 2.6216 3.5144 4.7643 6.0346
Δ Speed 1.2703 1.0000 0.7143 0.9073 0.8928[r] 1.2499 1.2703
6L 80 · MYC
6L 90 · MYD
800 N⋅m (590 lb⋅ft)
2005
50
94
35
46
46
92
2
3
6.0401
1.6384
1.4329[m]
Gear
Ratio
−3.0638[n]
 
4.0267
 
2.3635[o][q]
 
1.5319
 
1.1522[q][r]
 
0.8521
 
0.6667
 
Step 0.7609[n] 1.0000 1.7037[o] 1.5429 1.3296 1.3522 1.2781
Step 2[p] 1.1043[q] 1.1604 0.9832[q] 1.0580
Speed -1.3143 1.0000 1.7037 2.6286 3.4948 4.7258 6.0401
Δ Speed 1.3143 1.0000 0.7037 0.9249 0.8662[r] 1.2310 1.3143
ZF 6HP All[b] · 2000[s] 37
71
31
38
38
85
2
3
6.0354
1.6977
1.4327[m]
Gear
Ratio
−3.4025[n]
 
4.1708
 
2.3397[o]
 
1.5211
 
1.1428[q][r] 0.8672
 
0.6911
 
Step 0.8158[n] 1.0000 1.7826[o] 1.5382 1.3311 1.3178 1.2549
Step 2[p] 1.1589 1.1559 1.0101[q] 1.0502
Speed -1.2258 1.0000 1.7826 2.7419 3.6497 4.8096 6.0354
Δ Speed 1.2258 1.0000 0.7826 0.9593 0.9078[r] 1.1599 1.2258
Ratio
R & Even
       
Ratio
Odd
     
Algebra And Actuated Shift Elements
Brake A[t]
Brake B[u]
Clutch C[v]
Clutch D[w]
Clutch E[x]
  1. ^ All 6L-transmissions are based on the Lepelletier gear mechanism, first realized in the ZF 6HP gearbox
  2. ^ a b Other gearboxes using the Lepelletier gear mechanism see infobox
  3. ^ Layout
    • Input and output are on opposite sides
    • Planetary gearset 1 is on the input (turbine) side
    • Input shafts are R1 and, if actuated, C2/C3 (the combined carrier of the compound Ravigneaux gearset 2 and 3)
    • Output shaft is R3 (ring gear of gearset 3: outer Ravigneaux gearset)
  4. ^ Total Ratio Span (Total Ratio Spread · Total Gear Ratio)
    •  
    • A wider span enables the
      • downspeeding when driving outside the city limits
      • increase the climbing ability
        • when driving over mountain passes or off-road
        • or when towing a trailer
  5. ^ Ratio Span's Center
    •  
    • The center indicates the speed level of the transmission
    • Together with the final drive ratio
    • it gives the shaft speed level of the vehicle
  6. ^ Average Gear Step
    •  
    • With decreasing step width
      • the gears connect better to each other
      • shifting comfort increases
  7. ^ Sun 1: sun gear of gearset 1
  8. ^ Ring 1: ring gear of gearset 1
  9. ^ Sun 2: sun gear of gearset 2: inner Ravigneaux gearset
  10. ^ Ring 2: ring gear of gearset 2: inner Ravigneaux gearset
  11. ^ Sun 3: sun gear of gearset 3: outer Ravigneaux gearset
  12. ^ Ring 3: ring gear of gearset 3: outer Ravigneaux gearset
  13. ^ a b c d e Standard 50:50
    — 50 % Is Above And 50 % Is Below The Average Gear Step —
    • With steadily decreasing gear steps (yellow highlighted line Step)
    • and a particularly large step from 1st to 2nd gear
      • the lower half of the gear steps (between the small gears; rounded down, here the first 2) is always larger
      • and the upper half of the gear steps (between the large gears; rounded up, here the last 3) is always smaller
    • than the average gear step (cell highlighted yellow two rows above on the far right)
    • lower half: smaller gear steps are a waste of possible ratios (red bold)
    • upper half: larger gear steps are unsatisfactory (red bold)
  14. ^ a b c d e f g Standard R:1
    — Reverse And 1st Gear Have The Same Ratio —
    • The ideal reverse gear has the same transmission ratio as 1st gear
      • no impairment when maneuvering
      • especially when towing a trailer
      • a torque converter can only partially compensate for this deficiency
    • Plus 11.11 % minus 10 % compared to 1st gear is good
    • Plus 25 % minus 20 % is acceptable (red)
    • Above this is unsatisfactory (bold)
  15. ^ a b c d e f g Standard 1:2
    — Gear Step 1st To 2nd Gear As Small As Possible —
    • With continuously decreasing gear steps (yellow marked line Step)
    • the largest gear step is the one from 1st to 2nd gear, which
      • for a good speed connection and
      • a smooth gear shift
    • must be as small as possible
      • A gear ratio of up to 1.6667:1 (5:3) is good
      • Up to 1.7500:1 (7:4) is acceptable (red)
      • Above is unsatisfactory (bold)
  16. ^ a b c d From large to small gears (from right to left)
  17. ^ a b c d e f g h i j k Standard STEP
    — From Large To Small Gears: Steady And Progressive Increase In Gear Steps —
    • Gear steps should
      • increase: Δ Step (first green highlighted line Δ Step) is always greater than 1
      • As progressive as possible: Δ Step is always greater than the previous step
    • Not progressively increasing is acceptable (red)
    • Not increasing is unsatisfactory (bold)
  18. ^ a b c d e f g Standard SPEED
    — From Small To Large Gears: Steady Increase In Shaft Speed Difference —
    • Shaft speed differences should
      • increase: Δ Shaft Speed (second line marked in green Δ (Shaft) Speed) is always greater than the previous one
    • 1 difference smaller than the previous one is acceptable (red)
    • 2 consecutive ones are a waste of possible ratios (bold)
  19. ^ First gearbox on the market to use the Lepelletier gear mechanism
    for comparison purposes only
  20. ^ Blocks R2 and S3
  21. ^ Blocks C2 (carrier 2) and C3 (carrier 3)
  22. ^ Couples C1 (carrier 1) and S2
  23. ^ Couples C1 (carrier 1) with R2 and S3
  24. ^ Couples R1 with C2 (carrier 2) and C3 (carrier 3)

Applications

edit

6L 45 · MYA

edit

6L 50 · MYB

edit

6L 80 · MYC

edit

6L 90 · MYD

edit

See also

edit
  • List of GM transmissions
  • "GM Launches More Fuel-Saving Six-Speed Automatic Transmissions". GM Media Online. Retrieved June 18, 2006. [dead link]
  • Cadillac PDF info on 6L 80-E Transmission: http://www.cadillacfaq.com/stsfaq/tsb/data/tsb/05-07-30-023.pdf
  • "GM Ypsilanti Begins 6-Speed Production". Automotive Design and Production. Archived from the original on March 3, 2006. Retrieved January 3, 2006.

References

edit
  1. ^ Riley, Mike (2013-09-01). "Lepelletier Planetary System". Transmission Digest. Archived from the original on 2023-06-21. Retrieved 2023-03-03.
  2. ^ Csere, Csaba (March 2012). Dissected: 2013 Cadillac ATS. Car and Driver. ISBN 9781858941905. OCLC 38224673. Archived from the original on 2012-10-30. Retrieved 2012-11-21.
  3. ^ "2015 Chevrolet Colorado Specifications". GM. Retrieved 2014-10-14.
  4. ^ "Bremach Suv".
  5. ^ "GM Corporate Newsroom - United States - Home". media.gm.com. Retrieved 2016-10-26.
edit
  NODES
Idea 1
idea 1
Note 1