Helmut Grunsky (11 July 1904 – 5 June 1986) was a German mathematician who worked in complex analysis and geometric function theory. He introduced Grunsky's theorem and the Grunsky inequalities.[1]

Helmut Grunsky
Helmut Grunsky in Eichstätt in 1968
Born(1904-07-11)11 July 1904
Died5 June 1986(1986-06-05) (aged 81)
NationalityGerman
Alma materUniversity of Berlin
Known forGrunsky's theorem
Grunsky inequalities
Scientific career
FieldsMathematics
Doctoral advisorsLudwig Bieberbach
Issai Schur

In 1936, he was appointed editor of Jahrbuch über die Fortschritte der Mathematik. In 1939 he was forced to leave this position after Ludwig Bieberbach accused him of employing Jewish referees in a notorious letter.[2] He joined the Nazi Party on 1 April 1940, though he seems to have had little sympathy with its philosophy.[3] He published in the journal Deutsche Mathematik. From 1949 he was Privatdozent at the University of Tübingen; later, he was professor at the University of Mainz and at the University of Würzburg.

Works

edit
  • Roth, Oliver; Ruscheweyh, Stephan, eds. (2004), Helmut Grunsky. Collected Papers (in German), Lemgo, Germany: Heldermann Verlag, ISBN 978-3-88538-501-1, MR 2083061
  • Grunsky, Helmut (1978), Lectures on theory of functions in multiply connected domains, Studia mathematica: mathematische Lehrbücher, Göttingen: Vandenhoeck & Ruprecht, ISBN 3-525-40143-4
  • Schur, Issai (1968), Grunsky, Helmut (ed.), Vorlesungen über Invariantentheorie, Die Grundlehren der mathematischen Wissenschaften (in German), vol. 143, Berlin, New York: Springer-Verlag, MR 0229674
  • Grunsky, Helmut (1939), "Koeffizientenbedingungen für schlicht abbildende meromorphe Funktionen", Mathematische Zeitschrift (in German), 45: 29–61, doi:10.1007/bf01580272, S2CID 123606166
  • Grunsky, Helmut (1932), Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche, Dissertation Friedrich-Wilhelms-Universität zu Berlin (in German), vol. Schriften des Mathematischen Seminars und des Instituts für angewandte Mathematik der Universität Berlin, Band 1, Heft 4, S. 95–140, Leipzig: B. G. Teubner

Sources

edit

Notes

edit
edit


  NODES
Note 3