Küpfmüller's uncertainty principle

Küpfmüller's uncertainty principle by Karl Küpfmüller in the year 1924 states that the relation of the rise time of a bandlimited signal to its bandwidth is a constant.[1]

with either or

Proof

edit

A bandlimited signal   with fourier transform   is given by the multiplication of any signal   with a rectangular function of width   in frequency domain:

 

This multiplication with a rectangular function acts as a Bandlimiting filter and results in  

Applying the convolution theorem, we also know

 

Since the fourier transform of a rectangular function is a sinc function   and vice versa, it follows directly by definition that

 

Now the first root   is at  . This is the rise time   of the pulse  . Since the rise time influences how fast g(t) can go from 0 to its maximum, it affects how fast the bandwidth limited signal transitions from 0 to its maximal value.

We have the important finding, that the rise time is inversely related to the frequency bandwidth:

 

the lower the rise time, the wider the frequency bandwidth needs to be.

Equality is given as long as   is finite.

Regarding that a real signal has both positive and negative frequencies of the same frequency band,   becomes  , which leads to   instead of  

See also

edit

References

edit
  1. ^ Rohling, Hermann [in German] (2007). "Digitale Übertragung im Basisband" (PDF). Nachrichtenübertragung I (in German). Institut für Nachrichtentechnik, Technische Universität Hamburg-Harburg. Archived from the original (PDF) on 2007-07-12. Retrieved 2007-07-12.

Further reading

edit

´

  NODES
HOME 1
languages 1
Note 1
os 1
text 1
Theorie 1