In mathematics, the logarithmic mean is a function of two non-negative numbers which is equal to their difference divided by the logarithm of their quotient. This calculation is applicable in engineering problems involving heat and mass transfer.

Three-dimensional plot showing the values of the logarithmic mean.

Definition

edit

The logarithmic mean is defined as:

 

for the positive numbers x, y.

Inequalities

edit

The logarithmic mean of two numbers is smaller than the arithmetic mean and the generalized mean with exponent greater than 1. However, it is larger than the geometric mean and the harmonic mean, respectively. The inequalities are strict unless both numbers are equal.

 [1][2][3][4] Toyesh Prakash Sharma generalizes the arithmetic logarithmic geometric mean inequality for any n belongs to the whole number as  

Now, for n = 0:  

This is the arithmetic logarithmic geometric mean inequality. Similarly, one can also obtain results by putting different values of n as below

For n = 1:  

for the proof go through the bibliography.

Derivation

edit

Mean value theorem of differential calculus

edit

From the mean value theorem, there exists a value ξ in the interval between x and y where the derivative f ′ equals the slope of the secant line:

 

The logarithmic mean is obtained as the value of ξ by substituting ln for f and similarly for its corresponding derivative:

 

and solving for ξ:

 

Integration

edit

The logarithmic mean can also be interpreted as the area under an exponential curve.  

The area interpretation allows the easy derivation of some basic properties of the logarithmic mean. Since the exponential function is monotonic, the integral over an interval of length 1 is bounded by x and y. The homogeneity of the integral operator is transferred to the mean operator, that is  .

Two other useful integral representations are and 

Generalization

edit

Mean value theorem of differential calculus

edit

One can generalize the mean to n + 1 variables by considering the mean value theorem for divided differences for the n-th derivative of the logarithm.

We obtain

 

where   denotes a divided difference of the logarithm.

For n = 2 this leads to

 

Integral

edit

The integral interpretation can also be generalized to more variables, but it leads to a different result. Given the simplex   with   and an appropriate measure   which assigns the simplex a volume of 1, we obtain

 

This can be simplified using divided differences of the exponential function to

 .

Example n = 2:

 

Connection to other means

edit
  • Arithmetic mean:  
  • Geometric mean:  
  • Harmonic mean:  

See also

edit

References

edit
Citations
  1. ^ B. C. Carlson (1966). "Some inequalities for hypergeometric functions". Proc. Amer. Math. Soc. 17: 32–39. doi:10.1090/s0002-9939-1966-0188497-6.
  2. ^ B. Ostle & H. L. Terwilliger (1957). "A comparison of two means". Proc. Montana Acad. Sci. 17: 69–70.
  3. ^ Tung-Po Lin (1974). "The Power Mean and the Logarithmic Mean". The American Mathematical Monthly. 81 (8): 879–883. doi:10.1080/00029890.1974.11993684.
  4. ^ Frank Burk (1987). "The Geometric, Logarithmic, and Arithmetic Mean Inequality". The American Mathematical Monthly. 94 (6): 527–528. doi:10.2307/2322844. JSTOR 2322844.
Bibliography
  NODES
Note 2