Mass point geometry, colloquially known as mass points, is a problem-solving technique in geometry which applies the physical principle of the center of mass to geometry problems involving triangles and intersecting cevians.[1] All problems that can be solved using mass point geometry can also be solved using either similar triangles, vectors, or area ratios,[2] but many students prefer to use mass points. Though modern mass point geometry was developed in the 1960s by New York high school students,[3] the concept has been found to have been used as early as 1827 by August Ferdinand Möbius in his theory of homogeneous coordinates.[4]

Definitions

edit
 
Example of mass point addition

The theory of mass points is defined according to the following definitions:[5]

  • Mass Point - A mass point is a pair  , also written as  , including a mass,  , and an ordinary point,   on a plane.
  • Coincidence - We say that two points   and   coincide if and only if   and  .
  • Addition - The sum of two mass points   and   has mass   and point   where   is the point on   such that  . In other words,   is the fulcrum point that perfectly balances the points   and  . An example of mass point addition is shown at right. Mass point addition is closed, commutative, and associative.
  • Scalar Multiplication - Given a mass point   and a positive real scalar  , we define multiplication to be  . Mass point scalar multiplication is distributive over mass point addition.

Methods

edit

Concurrent cevians

edit

First, a point is assigned with a mass (often a whole number, but it depends on the problem) in the way that other masses are also whole numbers. The principle of calculation is that the foot of a cevian is the addition (defined above) of the two vertices (they are the endpoints of the side where the foot lie). For each cevian, the point of concurrency is the sum of the vertex and the foot. Each length ratio may then be calculated from the masses at the points. See Problem One for an example.

Splitting masses

edit

Splitting masses is the slightly more complicated method necessary when a problem contains transversals in addition to cevians. Any vertex that is on both sides the transversal crosses will have a split mass. A point with a split mass may be treated as a normal mass point, except that it has three masses: one used for each of the two sides it is on, and one that is the sum of the other two split masses and is used for any cevians it may have. See Problem Two for an example.

Other methods

edit
  • Routh's theorem - Many problems involving triangles with cevians will ask for areas, and mass points does not provide a method for calculating areas. However, Routh's theorem, which goes hand in hand with mass points, uses ratios of lengths to calculate the ratio of areas between a triangle and a triangle formed by three cevians.
  • Special cevians - When given cevians with special properties, like an angle bisector or an altitude, other theorems may be used alongside mass point geometry that determine length ratios. One very common theorem used likewise is the angle bisector theorem.
  • Stewart's theorem - When asked not for the ratios of lengths but for the actual lengths themselves, Stewart's theorem may be used to determine the length of the entire segment, and then mass points may be used to determine the ratios and therefore the necessary lengths of parts of segments.
  • Higher dimensions - The methods involved in mass point geometry are not limited to two dimensions; the same methods may be used in problems involving tetrahedra, or even higher-dimensional shapes, though it is rare that a problem involving four or more dimensions will require use of mass points.

Examples

edit
 
Diagram for solution to Problem One
 
Diagram for solution to Problem Two
 
Diagram for Problem Three
 
Diagram for Problem Three, System One
 
Diagram for Problem Three, System Two

Problem One

edit

Problem. In triangle  ,   is on   so that   and   is on   so that  . If   and   intersect at   and line   intersects   at  , compute   and  .

Solution. We may arbitrarily assign the mass of point   to be  . By ratios of lengths, the masses at   and   must both be  . By summing masses, the masses at   and   are both  . Furthermore, the mass at   is  , making the mass at   have to be   Therefore     and  . See diagram at right.

Problem Two

edit

Problem. In triangle  ,  ,  , and   are on  ,  , and  , respectively, so that  ,  , and  . If   and   intersect at  , compute   and  .

Solution. As this problem involves a transversal, we must use split masses on point  . We may arbitrarily assign the mass of point   to be  . By ratios of lengths, the mass at   must be   and the mass at   is split   towards   and   towards  . By summing masses, we get the masses at  ,  , and   to be  ,  , and  , respectively. Therefore   and  .

Problem Three

edit

Problem. In triangle  , points   and   are on sides   and  , respectively, and points   and   are on side   with   between   and  .   intersects   at point   and   intersects   at point  . If  ,  , and  , compute  .

Solution. This problem involves two central intersection points,   and  , so we must use multiple systems.

  • System One. For the first system, we will choose   as our central point, and we may therefore ignore segment   and points  ,  , and  . We may arbitrarily assign the mass at   to be  , and by ratios of lengths the masses at   and   are   and  , respectively. By summing masses, we get the masses at  ,  , and   to be 10, 9, and 13, respectively. Therefore,   and  .
  • System Two. For the second system, we will choose   as our central point, and we may therefore ignore segment   and points   and  . As this system involves a transversal, we must use split masses on point  . We may arbitrarily assign the mass at   to be  , and by ratios of lengths, the mass at   is   and the mass at   is split   towards   and 2 towards  . By summing masses, we get the masses at  ,  , and   to be 4, 6, and 10, respectively. Therefore,   and  .
  • Original System. We now know all the ratios necessary to put together the ratio we are asked for. The final answer may be found as follows:  

See also

edit

Notes

edit
  1. ^ Rhoad, R., Milauskas, G., and Whipple, R. Geometry for Enjoyment and Challenge. McDougal, Littell & Company, 1991.
  2. ^ "Archived copy". Archived from the original on 2010-07-20. Retrieved 2009-06-13.{{cite web}}: CS1 maint: archived copy as title (link)
  3. ^ Rhoad, R., Milauskas, G., and Whipple, R. Geometry for Enjoyment and Challenge. McDougal, Littell & Company, 1991
  4. ^ D. Pedoe Notes on the History of Geometrical Ideas I: Homogeneous Coordinates. Math Magazine (1975), 215-217.
  5. ^ H. S. M. Coxeter, Introduction to Geometry, pp. 216-221, John Wiley & Sons, Inc. 1969
edit
  NODES
Idea 1
idea 1
Note 4