Narrow-gap semiconductor

Narrow-gap semiconductors are semiconducting materials with a magnitude of bandgap that is smaller than 0.7 eV, which corresponds to an infrared absorption cut-off wavelength over 2.5 micron. A more extended definition includes all semiconductors with bandgaps smaller than silicon (1.1 eV).[1][2] Modern terahertz,[3] infrared,[4] and thermographic[5] technologies are all based on this class of semiconductors.

Narrow-gap materials made it possible to realize satellite remote sensing,[6] photonic integrated circuits for telecommunications,[7][8][9] and unmanned vehicle Li-Fi systems,[10] in the regime of Infrared detector and infrared vision.[11][12] They are also the materials basis for terahertz technology, including security surveillance of concealed weapon uncovering,[13][14][15] safe medical and industrial imaging with terahertz tomography,[16][17][18] as well as dielectric wakefield accelerators.[19][20][21] Besides, thermophotovoltaics embedded with narrow-gap semiconductors can potentially use the traditionally wasted portion of solar energy that takes up ~49% of the sun light spectrum.[22][23] Space crafts, deep ocean instruments, and vacuum physics setups use narrow-gap semiconductors to achieve cryogenic cooling.[24][25]

List of narrow-gap semiconductors

edit
Name Chemical formula Groups Band gap (300 K)
Mercury cadmium telluride Hg1−xCdxTe II-VI 0 to 1.5 eV
Mercury zinc telluride Hg1−xZnxTe II-VI 0.15 to 2.25 eV
Lead selenide PbSe IV-VI 0.27 eV
Lead(II) sulfide PbS IV-VI 0.37 eV
Telenium Te VI ~0.3 eV
Lead telluride PbTe IV-VI 0.32 eV
Magnetite Fe3O4 Transition Metal-VI 0.14 eV
Indium arsenide InAs III-V 0.354 eV
Indium antimonide InSb III-V 0.17 eV
Germanium Ge IV 0.67 eV
Gallium antimonide GaSb III-V 0.67 eV
Cadmium arsenide Cd3As2 II-V 0.5 to 0.6 eV
Bismuth telluride Bi2Te3 0.21 eV
Tin telluride SnTe IV-VI 0.18 eV
Tin selenide SnSe IV-VI 0.9 eV
Silver(I) selenide Ag2Se 0.07 eV
Magnesium silicide Mg2Si II-IV 0.79 eV[26]

See also

edit

References

edit
  1. ^ Li, Xiao-Hui (2022). "Narrow-Bandgap Materials for Optoelectronics Applications". Frontiers of Physics. 17 (1): 13304. Bibcode:2022FrPhy..1713304L. doi:10.1007/s11467-021-1055-z. S2CID 237652629.
  2. ^ Chu, Junhao; Sher, Arden (2008). Physics and Properties of Narrow Gap Semiconductors. Springer. doi:10.1007/978-0-387-74801-6. ISBN 978-0-387-74743-9.
  3. ^ Jones, Graham A.; Layer, David H.; Osenkowsky, Thomas G. (2007). National Association of Broadcasters Engineering Handbook. Taylor and Francis. p. 7. ISBN 978-1-136-03410-7.
  4. ^ Avraham, M.; Nemirovsky, J.; Blank, T.; Golan, G.; Nemirovsky, Y. (2022). "Toward an Accurate IR Remote Sensing of Body Temperature Radiometer Based on a Novel IR Sensing System Dubbed Digital TMOS". Micromachines. 13 (5): 703. doi:10.3390/mi13050703. PMC 9145132. PMID 35630174.
  5. ^ Hapke B (19 January 2012). Theory of Reflectance and Emittance Spectroscopy. Cambridge University Press. p. 416. ISBN 978-0-521-88349-8.
  6. ^ Lovett, D. R. Semimetals and narrow-bandgap semiconductors; Pion Limited: London, 1977; Chapter 7.
  7. ^ Inside Telecom Staff (30 July 2022). "How Can Photonic Chips Help to Create a Sustainable Digital Infrastructure?". Inside Telecom. Retrieved 20 September 2022.
  8. ^ Awad, Ehab (October 2018). "Bidirectional Mode Slicing and Re-Combining for Mode Conversion in Planar Waveguides". IEEE Access. 6 (1): 55937. doi:10.1109/ACCESS.2018.2873278. S2CID 53043619.
  9. ^ Vergyris, Panagiotis (16 June 2022). "Integrated photonics for quantum applications". Laser Focus World. Retrieved 20 September 2022.
  10. ^ "Comprehensive Summary of Modulation Techniques for LiFi | LiFi Research". www.lifi.eng.ed.ac.uk. Retrieved 2018-01-16.
  11. ^ "The Infrared Array Camera (IRAC)". Spitzer Space Telescope. NASA / JPL / Caltech. Archived from the original on 13 June 2010. Retrieved 13 January 2017.
  12. ^ Szondy, David (28 August 2016). "Spitzer goes "Beyond" for final mission". New Atlas. Retrieved 13 January 2017.
  13. ^ "Space in Images – 2002–06 – Meeting the team".
  14. ^ "Space camera blazes new terahertz trails". Times Higher Education (THE). 2003-02-12. Retrieved 2023-08-04.
  15. ^ Winner of the 2003/04 Research Councils' Business Plan Competition – 24 February 2004. epsrc.ac.uk. 27 February 2004
  16. ^ Guillet, J. P.; Recur, B.; Frederique, L.; Bousquet, B.; Canioni, L.; Manek-Hönninger, I.; Desbarats, P.; Mounaix, P. (2014). "Review of Terahertz Tomography Techniques". Journal of Infrared, Millimeter, and Terahertz Waves. 35 (4): 382–411. Bibcode:2014JIMTW..35..382G. CiteSeerX 10.1.1.480.4173. doi:10.1007/s10762-014-0057-0. S2CID 120535020.
  17. ^ Mittleman, Daniel M.; Hunsche, Stefan; Boivin, Luc; Nuss, Martin C. (1997). "T-ray tomography". Optics Letters. 22 (12): 904–906. Bibcode:1997OptL...22..904M. doi:10.1364/OL.22.000904. ISSN 1539-4794. PMID 18185701.
  18. ^ Katayama, I.; Akai, R.; Bito, M.; Shimosato, H.; Miyamoto, K.; Ito, H.; Ashida, M. (2010). "Ultrabroadband terahertz generation using 4-N,N-dimethylamino-4′-N′-methyl-stilbazolium tosylate single crystals". Applied Physics Letters. 97 (2): 021105. Bibcode:2010ApPhL..97b1105K. doi:10.1063/1.3463452. ISSN 0003-6951.
  19. ^ Dolgashev, Valery; Tantawi, Sami; Higashi, Yasuo; Spataro, Bruno (2010-10-25). "Geometric dependence of radio-frequency breakdown in normal conducting accelerating structures". Applied Physics Letters. 97 (17): 171501. Bibcode:2010ApPhL..97q1501D. doi:10.1063/1.3505339.
  20. ^ Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X. (2015-10-06). "Terahertz-driven linear electron acceleration". Nature Communications. 6 (1): 8486. arXiv:1411.4709. Bibcode:2015NatCo...6.8486N. doi:10.1038/ncomms9486. PMC 4600735. PMID 26439410.
  21. ^ Jing, Chunguang (2016). "Dielectric Wakefield Accelerators". Reviews of Accelerator Science and Technology. 09 (6): 127–149. Bibcode:2016RvAST...9..127J. doi:10.1142/s1793626816300061.
  22. ^ Poortmans, Jef. "IMEC website: Photovoltaic Stacks". Archived from the original on 2007-10-13. Retrieved 2008-02-17.
  23. ^ "A new heat engine with no moving parts is as efficient as a steam turbine". MIT News | Massachusetts Institute of Technology. 13 April 2022. Retrieved 2022-04-13.
  24. ^ Radebaugh, Ray (2009-03-31). "Cryocoolers: the state of the art and recent developments". Journal of Physics: Condensed Matter. 21 (16): 164219. Bibcode:2009JPCM...21p4219R. doi:10.1088/0953-8984/21/16/164219. ISSN 0953-8984. PMID 21825399. S2CID 22695540.
  25. ^ Cooper, Bernard E; Hadfield, Robert H (2022-06-28). "Viewpoint: Compact cryogenics for superconducting photon detectors". Superconductor Science and Technology. 35 (8): 080501. Bibcode:2022SuScT..35h0501C. doi:10.1088/1361-6668/ac76e9. ISSN 0953-2048. S2CID 249534834.
  26. ^ Nelson, James T. (1955). "Chicago Section: 1. Electrical and optical properties of MgPSn and Mg2Si". American Journal of Physics. 23 (6). American Association of Physics Teachers (AAPT): 390. doi:10.1119/1.1934018. ISSN 0002-9505.

Further reading

edit


  NODES
eth 2
News 1
see 3