Pentellated 6-orthoplexes

Orthogonal projections in B6 Coxeter plane

6-orthoplex

Pentellated 6-orthoplex
Pentellated 6-cube

6-cube

Pentitruncated 6-orthoplex

Penticantellated 6-orthoplex

Penticantitruncated 6-orthoplex

Pentiruncitruncated 6-orthoplex

Pentiruncicantellated 6-cube

Pentiruncicantitruncated 6-orthoplex

Pentisteritruncated 6-cube

Pentistericantitruncated 6-orthoplex

Pentisteriruncicantitruncated 6-orthoplex
(Omnitruncated 6-cube)

In six-dimensional geometry, a pentellated 6-orthoplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-orthoplex.

There are unique 16 degrees of pentellations of the 6-orthoplex with permutations of truncations, cantellations, runcinations, and sterications. Ten are shown, with the other 6 more easily constructed as a pentellated 6-cube. The simple pentellated 6-orthoplex (Same as pentellated 5-cube) is also called an expanded 6-orthoplex, constructed by an expansion operation applied to the regular 6-orthoplex. The highest form, the pentisteriruncicantitruncated 6-orthoplex, is called an omnitruncated 6-orthoplex with all of the nodes ringed.

Pentitruncated 6-orthoplex

edit
Pentitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,5{3,3,3,3,4}
Coxeter-Dynkin diagrams            
5-faces
4-faces
Cells
Faces
Edges 8640
Vertices 1920
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

edit
  • Teritruncated hexacontatetrapeton (Acronym: tacox) (Jonathan Bowers)[1]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Penticantellated 6-orthoplex

edit
Penticantellated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,2,5{3,3,3,3,4}
Coxeter-Dynkin diagrams            
5-faces
4-faces
Cells
Faces
Edges 21120
Vertices 3840
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

edit
  • Terirhombated hexacontitetrapeton (Acronym: tapox) (Jonathan Bowers)[2]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Penticantitruncated 6-orthoplex

edit
Penticantitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,2,5{3,3,3,3,4}
Coxeter-Dynkin diagrams            
5-faces
4-faces
Cells
Faces
Edges 30720
Vertices 7680
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

edit
  • Terigreatorhombated hexacontitetrapeton (Acronym: togrig) (Jonathan Bowers)[3]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Pentiruncitruncated 6-orthoplex

edit
Pentiruncitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,3,5{3,3,3,3,4}
Coxeter-Dynkin diagrams            
5-faces
4-faces
Cells
Faces
Edges 51840
Vertices 11520
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

edit
  • Teriprismatotruncated hexacontitetrapeton (Acronym: tocrax) (Jonathan Bowers)[4]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Pentiruncicantitruncated 6-orthoplex

edit
Pentiruncicantitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,2,3,5{3,3,3,3,4}
Coxeter-Dynkin diagrams            
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 23040
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

edit
  • Terigreatoprismated hexacontitetrapeton (Acronym: tagpog) (Jonathan Bowers)[5]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]

Pentistericantitruncated 6-orthoplex

edit
Pentistericantitruncated 6-orthoplex
Type uniform 6-polytope
Schläfli symbol t0,1,2,4,5{3,3,3,3,4}
Coxeter-Dynkin diagrams            
5-faces
4-faces
Cells
Faces
Edges 80640
Vertices 23040
Vertex figure
Coxeter groups B6, [4,3,3,3,3]
Properties convex

Alternate names

edit
  • Tericelligreatorhombated hexacontitetrapeton (Acronym: tecagorg) (Jonathan Bowers)[6]

Images

edit
orthographic projections
Coxeter plane B6 B5 B4
Graph      
Dihedral symmetry [12] [10] [8]
Coxeter plane B3 B2
Graph    
Dihedral symmetry [6] [4]
Coxeter plane A5 A3
Graph    
Dihedral symmetry [6] [4]


edit

These polytopes are from a set of 63 uniform 6-polytopes generated from the B6 Coxeter plane, including the regular 6-cube or 6-orthoplex.

B6 polytopes
 
β6
 
t1β6
 
t2β6
 
t2γ6
 
t1γ6
 
γ6
 
t0,1β6
 
t0,2β6
 
t1,2β6
 
t0,3β6
 
t1,3β6
 
t2,3γ6
 
t0,4β6
 
t1,4γ6
 
t1,3γ6
 
t1,2γ6
 
t0,5γ6
 
t0,4γ6
 
t0,3γ6
 
t0,2γ6
 
t0,1γ6
 
t0,1,2β6
 
t0,1,3β6
 
t0,2,3β6
 
t1,2,3β6
 
t0,1,4β6
 
t0,2,4β6
 
t1,2,4β6
 
t0,3,4β6
 
t1,2,4γ6
 
t1,2,3γ6
 
t0,1,5β6
 
t0,2,5β6
 
t0,3,4γ6
 
t0,2,5γ6
 
t0,2,4γ6
 
t0,2,3γ6
 
t0,1,5γ6
 
t0,1,4γ6
 
t0,1,3γ6
 
t0,1,2γ6
 
t0,1,2,3β6
 
t0,1,2,4β6
 
t0,1,3,4β6
 
t0,2,3,4β6
 
t1,2,3,4γ6
 
t0,1,2,5β6
 
t0,1,3,5β6
 
t0,2,3,5γ6
 
t0,2,3,4γ6
 
t0,1,4,5γ6
 
t0,1,3,5γ6
 
t0,1,3,4γ6
 
t0,1,2,5γ6
 
t0,1,2,4γ6
 
t0,1,2,3γ6
 
t0,1,2,3,4β6
 
t0,1,2,3,5β6
 
t0,1,2,4,5β6
 
t0,1,2,4,5γ6
 
t0,1,2,3,5γ6
 
t0,1,2,3,4γ6
 
t0,1,2,3,4,5γ6

Notes

edit
  1. ^ Klitzing, (x4o3o3o3x3x - tacox)
  2. ^ Klitzing, (x4o3o3x3o3x - tapox)
  3. ^ Klitzing, (x4o3o3x3x3x - togrig)
  4. ^ Klitzing, (x4o3x3o3x3x - tocrax)
  5. ^ Klitzing, (x4x3o3x3x3x - tagpog)
  6. ^ Klitzing, (x4x3o3x3x3x - tecagorg)

References

edit
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Klitzing, Richard. "6D uniform polytopes (polypeta)". x4o3o3o3x3x - tacox, x4o3o3x3o3x - tapox, x4o3o3x3x3x - togrig, x4o3x3o3x3x - tocrax, x4x3o3x3x3x - tagpog, x4x3o3x3x3x - tecagorg
edit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
  NODES
Note 3
Project 7