Post–Hartree–Fock

(Redirected from Post-Hartree–Fock)

In computational chemistry, post–Hartree–Fock[1][2] (post-HF) methods are the set of methods developed to improve on the Hartree–Fock (HF), or self-consistent field (SCF) method. They add electron correlation which is a more accurate way of including the repulsions between electrons than in the Hartree–Fock method where repulsions are only averaged.

Details

edit

In general, the SCF procedure makes several assumptions about the nature of the multi-body Schrödinger equation and its set of solutions:

For the great majority of systems under study, in particular for excited states and processes such as molecular dissociation reactions, the fourth item is by far the most important. As a result, the term post–Hartree–Fock method is typically used for methods of approximating the electron correlation of a system.

Usually, post–Hartree–Fock methods[3][4] give more accurate results than Hartree–Fock calculations, although the added accuracy comes with the price of added computational cost.

Post–Hartree–Fock methods

edit
edit

Methods that use more than one determinant are not strictly post–Hartree–Fock methods, as they use a single determinant as reference, but they often use similar perturbation, or configuration interaction methods to improve the description of electron correlation. These methods include:

References

edit
  1. ^ Cramer, Christopher J. (2002). Essentials of Computational Chemistry. John Wiley & Sons. ISBN 0-470-09182-7.
  2. ^ Jensen, Frank (1999). Introduction to Computational Chemistry 2nd edition. John Wiley & Sons. ISBN 0-470-01187-4.
  3. ^ "Post-Hartree–Fock Methods", Methods of Molecular Quantum Mechanics, John Wiley & Sons, Ltd, 2009, pp. 133–139, doi:10.1002/9780470684559.ch8, ISBN 9780470684559
  4. ^ DaCosta, Herbert (2011). Rate Constant Calculation for Thermal Reactions : Methods and Applications. John Wiley & Sons. ISBN 9781118166123. OCLC 769342424.
  5. ^ David Maurice & Martin Head-Gordon (May 10, 1999). "Analytical second derivatives for excited electronic states using the single excitation configuration interaction method: theory and application to benzo[a]pyrene and chalcone". Molecular Physics. 96 (10). Taylor & Francis: 1533–1541. Bibcode:1999MolPh..96.1533M. doi:10.1080/00268979909483096.
  6. ^ Martin Head-Gordon; Rudolph J. Rico; Manabu Oumi & Timothy J. Lee (1994). "A doubles correction to electronic excited states from configuration interaction in the space of single substitutions". Chemical Physics Letters. 219 (1–2). Elsevier: 21–29. Bibcode:1994CPL...219...21H. doi:10.1016/0009-2614(94)00070-0.
  7. ^ George D. Purvis & Rodney J. Bartlett (1982). "A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples". The Journal of Chemical Physics. 76 (4). The American Institute of Physics: 1910–1919. Bibcode:1982JChPh..76.1910P. doi:10.1063/1.443164.
  8. ^ Krishnan Raghavachari; Gary W. Trucks; John A. Pople & Martin Head-Gordon (March 24, 1989). "A fifth-order perturbation comparison of electron correlation theories". Chemical Physics Letters. 157 (6). Elsevier Science: 479–483. Bibcode:1989CPL...157..479R. doi:10.1016/S0009-2614(89)87395-6.
  9. ^ Troy Van Voorhis & Martin Head-Gordon (June 19, 2001). "Two-body coupled cluster expansions". The Journal of Chemical Physics. 115 (11). The American Institute of Physics: 5033–5041. Bibcode:2001JChPh.115.5033V. doi:10.1063/1.1390516.
  10. ^ H. D. Meyer; U. Manthe & L. S. Cederbaum (1990). "The multi-configurational time-dependent Hartree approach". Chem. Phys. Lett. 165 (73): 73–78. Bibcode:1990CPL...165...73M. doi:10.1016/0009-2614(90)87014-I.
  11. ^ Chr. Møller & M. S. Plesset (October 1934). "Note on an Approximation Treatment form Many-Electron Systems". Physical Review. 46 (7). The American Physical Society: 618–622. Bibcode:1934PhRv...46..618M. doi:10.1103/PhysRev.46.618.
  12. ^ Krishnan Raghavachari & John A. Pople (February 22, 1978). "Approximate fourth-order perturbation theory of the electron correlation energy". International Journal of Quantum Chemistry. 14 (1). Wiley InterScience: 91–100. doi:10.1002/qua.560140109.
  13. ^ John A. Pople; Martin Head‐Gordon & Krishnan Raghavachari (1987). "Quadratic configuration interaction. A general technique for determining electron correlation energies". The Journal of Chemical Physics. 87 (10). American Institute of Physics: 5968–35975. Bibcode:1987JChPh..87.5968P. doi:10.1063/1.453520.
  14. ^ Larry A. Curtiss; Krishnan Raghavachari; Gary W. Trucks & John A. Pople (February 15, 1991). "Gaussian‐2 theory for molecular energies of first‐ and second‐row compounds". The Journal of Chemical Physics. 94 (11). The American Institute of Physics: 7221–7231. Bibcode:1991JChPh..94.7221C. doi:10.1063/1.460205.
  15. ^ Larry A. Curtiss; Krishnan Raghavachari; Paul C. Redfern; Vitaly Rassolov & John A. Pople (July 22, 1998). "Gaussian-3 (G3) theory for molecules containing first and second-row atoms". The Journal of Chemical Physics. 109 (18). The American Institute of Physics: 7764–7776. Bibcode:1998JChPh.109.7764C. doi:10.1063/1.477422.
  16. ^ William S. Ohlinger; Philip E. Klunzinger; Bernard J. Deppmeier & Warren J. Hehre (January 2009). "Efficient Calculation of Heats of Formation". The Journal of Physical Chemistry A. 113 (10). ACS Publications: 2165–2175. Bibcode:2009JPCA..113.2165O. doi:10.1021/jp810144q. PMID 19222177.

Further reading

edit
  • Jensen, F. (1999). Introduction to Computational Chemistry. New York: John Wiley & Sons. ISBN 0471980854.
  NODES
HOME 1
Intern 1
languages 1
Note 2
os 17
Theorie 1