"Roachoids",[1] also known as "Roachids", "Blattoids"[2] or Eoblattodea,[3] are members of the stem group of Dictyoptera (the group containing modern cockroaches, termites and praying mantises). They generally resemble cockroaches, but most members, unlike modern dictyopterans, have generally long external ovipositors, and are thought not to have laid ootheca like modern dictyopterans.

Roachoid
Temporal range: Late Carboniferous–Late Cretaceous
Reconstruction of Progonoblattina (=Archoblattina) beecheri from the Late Carboniferous of North America
Reconstruction of Progonoblattina (=Archoblattina) beecheri from the Late Carboniferous of North America
Scientific classificationEdit this classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Cohort: Polyneoptera
Superorder: Dictyoptera
Subdivisions

Among others

Cladistically included but traditionally excluded taxa

Systematic position

edit
 
Interpretive drawing of a specimen of Anthracoblattina ensifera (Phyloblattidae) in ventral view, showing prominent external ovipositor

Cockroaches are popularly thought to be an ancient order of insects, with their origins in the Carboniferous.[4] However, since the middle of the 20th century it has been known that the primitive cockroach insects found fossilized in Palaeozoic strata are the forerunners not only of modern cockroaches and termites but also of mantises.[5] The origin of these groups from a blattopteran stock are now generally thought to be in the Early Jurassic; the earliest modern cockroaches appeared during the Late Jurassic.[6] Thus, the “Palaeozoic cockroaches” are not cockroaches per se, but a paraphyletic assemblage of primitive relatives.[7] The youngest known roachoids date to the Cretaceous, by which time they were rare compared to modern cockroaches.[8]

Anatomy and habits

edit

The fossils assigned to the "roachoids" are of general cockroach-like build, with a large disc-like pronotum covering most of the head, long antennae, legs built for running, flattened body and heavily veined wings with the distinct arched CuP-vein so typical of modern cockroach wings.[9] Like modern cockroaches, the roachids were probably swift litter inhabitants living on a wide range of dead plant and animal matter.

Contrary to modern forms, female roachoids all have a well-developed external ovipositor. They probably inserted eggs into substrate. The egg pods, called ootheca, seen in modern dictyopterans is a new shared trait (synapomorphy) separating them from their primitive ancestors.[10] Some of the roachoid species could reach relatively large sizes compared to most of their modern relatives, like Progonoblattina[11][12] and Necymylacris[13][14] from Carboniferous reach around 9 centimetres (3+12 in) in total length, and the largest Opsiomylacris having wings reaching 7.5 centimetres (3 in), close to modern largest cockroach Megaloblatta longipennis.[12]

See also

edit

References

edit
  1. ^ Correia, Pedro; Pereira, Sofia; Cavaleiro, Marco; Correia, Miguel; Sá, Artur A.; Nel, André (2022-02-06). "The first poroblattinid roachoid from the uppermost Carboniferous of Portugal". Historical Biology. 35 (2): 242–248. doi:10.1080/08912963.2022.2032030. ISSN 0891-2963. S2CID 246664148.
  2. ^ Haug, J.T.; Leipner, A.; Wappler, T.; Haug, C. (2013-10-31). "Palaeozoic insect nymphs: new finds from the Piesberg quarry (Upper Carboniferous, Germany)". Bulletin of Geosciences: 779–791. doi:10.3140/bull.geosci.1401. ISSN 1802-8225.
  3. ^ Li, Xinran (2019-08-30). "Disambiguating the scientific names of cockroaches". Palaeoentomology. 2 (4): 390–402. doi:10.11646/palaeoentomology.2.4.13. ISSN 2624-2834. S2CID 202789239.
  4. ^ Guthrie, D. M. & A. R. Tindal (1968): The Biology of the Cockroach. St. Martin's Press, New York
  5. ^ Grimaldi, D (1997): A fossil mantis (Insecta: Mantoidea) in Cretaceous amber of New Jersey, with comments on early history of Dictyoptera. American Museum Novitates 3204: 1–11
  6. ^ Vršanský, P.; Palková, H.; Vršanská, L.; Koubová, I.; Hinkelman, J. (2022). "Mesozoic origin-delayed explosive radiation of the cockroach family Corydiidae Saussure, 1864". Biologia. 78 (6): 1627–1658. doi:10.1007/s11756-022-01279-1. S2CID 254479766.
  7. ^ Grimaldi, D. & M. S. Engel, Michael (2005): Evolution of the Insects, Cambridge University Press, ISBN 0-521-82149-5
  8. ^ Li, Xin-Ran; Huang, Di-Ying (2023-03-29). "Atypical 'long-tailed' cockroaches arose during Cretaceous in response to angiosperm terrestrial revolution". PeerJ. 11: e15067. doi:10.7717/peerj.15067. ISSN 2167-8359. PMC 10066690. PMID 37013144.
  9. ^ Schneider, J. (1983): Die Blattodea (Insecta) des Paleozoicums, Teil II, Morphogenese des Flügelstrukturen und Phylogenie. Freiberger Forchnungshefte, Reie C 391. pp 5-34
  10. ^ Hörnig, Marie; Haug, Carolin; Schneider, Jörg; Haug, Joachim (2018). "Evolution of reproductive strategies in dictyopteran insects – clues from ovipositor morphology of extinct roachoids". Acta Palaeontologica Polonica. 63. doi:10.4202/app.00324.2016. ISSN 0567-7920.
  11. ^ Sellards, Elias Howard (1903-04-01). "Some new structural characters of Paleozoic cockroaches". American Journal of Science. s4-15 (88): 307–315. Bibcode:1903AmJS...15..307S. doi:10.2475/ajs.s4-15.88.307. ISSN 0002-9599.
  12. ^ a b Schneider, Joerg W.; Rößler, Ronny (2023). "The Early History of Giant Cockroaches: Gyroblattids and Necymylacrids (Blattodea) of the Late Carboniferous". Diversity. 15 (3): 429. doi:10.3390/d15030429. ISSN 1424-2818.
  13. ^ Easterday, Cary Ray (2004). Stratigraphy and paleontology of Cemetery Hill (Desmoinesian-Missourian: Upper Carboniferous), Columbiana County, eastern Ohio (Thesis). The Ohio State University.
  14. ^ Schneider, Joerg; Scholze, Frank; Germann, Sebastian; Lucas, Spencer (2021-04-16). "THE LATE PENNSYLVANIAN NEARSHORE INSECT FAUNA OF THE KINNEY BRICK QUARRY INVERTEBRATE AND VERTEBRATE FOSSIL LAGERSTÄTTE, NEW MEXICO". Bulletin of the American Museum of Natural History. 84.
  NODES
see 3
Story 3