In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations, including the theory of harmonic maps.[1][2][3]

Definition

edit

Given Riemannian manifolds   and  , which is assumed by Nash's smooth embedding theorem without loss of generality to be isometrically embedded into   as [4][5]   First-order ( ) Sobolev mappings can also be defined in the context of metric spaces.[6][7]

Approximation

edit

The strong approximation problem consists in determining whether smooth mappings from   to   are dense in   with respect to the norm topology. When  , Morrey's inequality implies that Sobolev mappings are continuous and can thus be strongly approximated by smooth maps. When  , Sobolev mappings have vanishing mean oscillation[8] and can thus be approximated by smooth maps.[9]

When  , the question of density is related to obstruction theory:   is dense in   if and only if every continuous mapping on a from a  –dimensional triangulation of   into   is the restriction of a continuous map from   to  .[10][5]

The problem of finding a sequence of weak approximation of maps in   is equivalent to the strong approximation when   is not an integer.[10] When   is an integer, a necessary condition is that the restriction to a  -dimensional triangulation of every continuous mapping from a  –dimensional triangulation of   into   coincides with the restriction a continuous map from   to  .[5] When  , this condition is sufficient.[11] For   with  , this condition is not sufficient.[12]

Homotopy

edit

The homotopy problem consists in describing and classifying the path-connected components of the space   endowed with the norm topology. When   and  , then the path-connected components of   are essentially the same as the path-connected components of  : two maps in   are connected by a path in   if and only if they are connected by a path in  , any path-connected component of   and any path-connected component of   intersects   non trivially.[13][14][15] When  , two maps in   are connected by a continuous path in   if and only if their restrictions to a generic  -dimensional triangulation are homotopic.[5]: th. 1.1 

Extension of traces

edit

The classical trace theory states that any Sobolev map   has a trace   and that when  , the trace operator is onto. The proof of the surjectivity being based on an averaging argument, the result does not readily extend to Sobolev mappings. The trace operator is known to be onto when  [16] or when  ,   is finite and  .[17] The surjectivity of the trace operator fails if   [16][18] or if   is infinite for some  .[17][19]

Lifting

edit

Given a covering map  , the lifting problem asks whether any map   can be written as   for some  , as it is the case for continuous or smooth   and   when   is simply-connected in the classical lifting theory. If the domain   is simply connected, any map   can be written as   for some   when  ,[20][21] when   and  [22][21] and when   is compact,   and  .[23] There is a topological obstruction to the lifting when   and an analytical obstruction when  .[20][21]

References

edit
  1. ^ Hélein, Frédéric; Wood, John C. (2008). "Harmonic maps". Handbook of Global Analysis: 417–491. doi:10.1016/B978-044452833-9.50009-7.
  2. ^ Eells, J.; Lemaire, L. (March 1978). "A Report on Harmonic Maps". Bulletin of the London Mathematical Society. 10 (1): 1–68. doi:10.1112/blms/10.1.1.
  3. ^ Eells, J.; Lemaire, L. (September 1988). "Another Report on Harmonic Maps". Bulletin of the London Mathematical Society. 20 (5): 385–524. doi:10.1112/blms/20.5.385.
  4. ^ Mironescu, Petru (2007). "Sobolev maps on manifolds: degree, approximation, lifting" (PDF). Contemporary Mathematics. 446: 413–436. doi:10.1090/conm/446/08642. ISBN 9780821841907.
  5. ^ a b c d Hang, Fengbo; Lin, Fanghua (2003). "Topology of sobolev mappings, II". Acta Mathematica. 191 (1): 55–107. doi:10.1007/BF02392696. S2CID 121520479.
  6. ^ Chiron, David (August 2007). "On the definitions of Sobolev and BV spaces into singular spaces and the trace problem". Communications in Contemporary Mathematics. 09 (4): 473–513. doi:10.1142/S0219199707002502.
  7. ^ Hajłasz, Piotr (2009). "Sobolev Mappings between Manifolds and Metric Spaces". Sobolev Spaces in Mathematics I. International Mathematical Series. 8: 185–222. doi:10.1007/978-0-387-85648-3_7. ISBN 978-0-387-85647-6.
  8. ^ Brezis, H.; Nirenberg, L. (September 1995). "Degree theory and BMO; part I: Compact manifolds without boundaries". Selecta Mathematica. 1 (2): 197–263. doi:10.1007/BF01671566. S2CID 195270732.
  9. ^ Schoen, Richard; Uhlenbeck, Karen (1 January 1982). "A regularity theory for harmonic maps". Journal of Differential Geometry. 17 (2). doi:10.4310/jdg/1214436923.
  10. ^ a b Bethuel, Fabrice (1991). "The approximation problem for Sobolev maps between two manifolds". Acta Mathematica. 167: 153–206. doi:10.1007/BF02392449. S2CID 122996551.
  11. ^ Pakzad, M.R.; Rivière, T. (February 2003). "Weak density of smooth maps for the Dirichlet energy between manifolds". Geometric and Functional Analysis. 13 (1): 223–257. doi:10.1007/s000390300006. S2CID 121794503.
  12. ^ Bethuel, Fabrice (February 2020). "A counterexample to the weak density of smooth maps between manifolds in Sobolev spaces". Inventiones Mathematicae. 219 (2): 507–651. arXiv:1401.1649. Bibcode:2020InMat.219..507B. doi:10.1007/s00222-019-00911-3. S2CID 119627475.
  13. ^ Brezis, Haı̈m; Li, YanYan (September 2000). "Topology and Sobolev spaces". Comptes Rendus de l'Académie des Sciences - Series I - Mathematics. 331 (5): 365–370. Bibcode:2000CRASM.331..365B. doi:10.1016/S0764-4442(00)01656-6.
  14. ^ Brezis, Haim; Li, Yanyan (July 2001). "Topology and Sobolev Spaces". Journal of Functional Analysis. 183 (2): 321–369. doi:10.1006/jfan.2000.3736.
  15. ^ Bousquet, Pierre (February 2008). "Fractional Sobolev spaces and topology". Nonlinear Analysis: Theory, Methods & Applications. 68 (4): 804–827. doi:10.1016/j.na.2006.11.038.
  16. ^ a b Hardt, Robert; Lin, Fang-Hua (September 1987). "Mappings minimizing the Lp norm of the gradient". Communications on Pure and Applied Mathematics. 40 (5): 555–588. doi:10.1002/cpa.3160400503.
  17. ^ a b Mironescu, Petru; Van Schaftingen, Jean (9 July 2021). "Trace theory for Sobolev mappings into a manifold". Annales de la Faculté des sciences de Toulouse: Mathématiques. 30 (2): 281–299. arXiv:2001.02226. doi:10.5802/afst.1675. S2CID 210023485.
  18. ^ Bethuel, Fabrice; Demengel, Françoise (October 1995). "Extensions for Sobolev mappings between manifolds". Calculus of Variations and Partial Differential Equations. 3 (4): 475–491. doi:10.1007/BF01187897. S2CID 121749565.
  19. ^ Bethuel, Fabrice (March 2014). "A new obstruction to the extension problem for Sobolev maps between manifolds". Journal of Fixed Point Theory and Applications. 15 (1): 155–183. arXiv:1402.4614. doi:10.1007/s11784-014-0185-0. S2CID 119614310.
  20. ^ a b Bourgain, Jean; Brezis, Haim; Mironescu, Petru (December 2000). "Lifting in Sobolev spaces". Journal d'Analyse Mathématique. 80 (1): 37–86. doi:10.1007/BF02791533.
  21. ^ a b c Bethuel, Fabrice; Chiron, David (2007). "Some questions related to the lifting problem in Sobolev spaces". Contemporary Mathematics. 446: 125–152. doi:10.1090/conm/446/08628. ISBN 9780821841907.
  22. ^ Bethuel, Fabrice; Zheng, Xiaomin (September 1988). "Density of smooth functions between two manifolds in Sobolev spaces". Journal of Functional Analysis. 80 (1): 60–75. doi:10.1016/0022-1236(88)90065-1.
  23. ^ Mironescu, Petru; Van Schaftingen, Jean (7 September 2021). "Lifting in compact covering spaces for fractional Sobolev mappings". Analysis & PDE. 14 (6): 1851–1871. arXiv:1907.01373. doi:10.2140/apde.2021.14.1851. S2CID 195776361.

Further reading

edit
  NODES
HOME 1
Intern 1
languages 2
Note 1
os 4
text 2