A partial solar eclipse occurred at the Moon's ascending node of orbit between Sunday, August 19 and Monday, August 20, 1906,[1][2][3] with a magnitude of 0.3147. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.[4]
Solar eclipse of August 20, 1906 | |
---|---|
Type of eclipse | |
Nature | Partial |
Gamma | 1.3731 |
Magnitude | 0.3147 |
Maximum eclipse | |
Coordinates | 70°48′N 66°24′W / 70.8°N 66.4°W |
Times (UTC) | |
Greatest eclipse | 1:12:50 |
References | |
Saros | 153 (3 of 70) |
Catalog # (SE5000) | 9295 |
A partial eclipse was visible for parts of Northern Russia, Alaska, Western Canada, and the Pacific Northwest.
Eclipse details
editShown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[5]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1906 August 19 at 23:53:11.5 UTC |
Equatorial Conjunction | 1906 August 20 at 00:33:41.7 UTC |
Greatest Eclipse | 1906 August 20 at 01:12:49.6 UTC |
Ecliptic Conjunction | 1906 August 20 at 01:27:22.8 UTC |
Last Penumbral External Contact | 1906 August 20 at 02:32:40.9 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.31473 |
Eclipse Obscuration | 0.20068 |
Gamma | 1.37306 |
Sun Right Ascension | 09h53m24.2s |
Sun Declination | +12°49'20.8" |
Sun Semi-Diameter | 15'48.5" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 09h54m44.1s |
Moon Declination | +14°05'01.4" |
Moon Semi-Diameter | 15'32.6" |
Moon Equatorial Horizontal Parallax | 0°57'02.8" |
ΔT | 5.8 s |
Eclipse season
editThis eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
July 21 Ascending node (new moon) |
August 4 Descending node (full moon) |
August 20 Ascending node (new moon) |
---|---|---|
Partial solar eclipse Solar Saros 115 |
Total lunar eclipse Lunar Saros 127 |
Partial solar eclipse Solar Saros 153 |
Related eclipses
editEclipses in 1906
edit- A total lunar eclipse on February 9.
- A partial solar eclipse on February 23.
- A partial solar eclipse on July 21.
- A total lunar eclipse on August 4.
- A partial solar eclipse on August 20.
Metonic
edit- Preceded by: Solar eclipse of October 31, 1902
Tzolkinex
edit- Followed by: Solar eclipse of September 30, 1913
Half-Saros
edit- Preceded by: Lunar eclipse of August 12, 1897
- Followed by: Lunar eclipse of August 24, 1915
Tritos
edit- Preceded by: Solar eclipse of September 18, 1895
- Followed by: Solar eclipse of July 19, 1917
Solar Saros 153
edit- Preceded by: Solar eclipse of August 7, 1888
- Followed by: Solar eclipse of August 30, 1924
Inex
edit- Preceded by: Solar eclipse of September 7, 1877
- Followed by: Solar eclipse of July 30, 1935
Triad
edit- Preceded by: Solar eclipse of October 19, 1819
Solar eclipses of 1902–1906
editThis eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[6]
The partial solar eclipses on May 7, 1902 and October 31, 1902 occur in the previous lunar year eclipse set, and the partial solar eclipse on July 21, 1906 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1902 to 1906 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
108 | April 8, 1902 Partial |
1.5024 | 113 | October 1, 1902 | ||
118 | March 29, 1903 Annular |
0.8413 | 123 | September 21, 1903 Total |
−0.8967 | |
128 | March 17, 1904 Annular |
0.1299 | 133 | September 9, 1904 Total |
−0.1625 | |
138 | March 6, 1905 Annular |
−0.5768 | 143 |
August 30, 1905 Total |
0.5708 | |
148 | February 23, 1906 Partial |
−1.2479 | 153 | August 20, 1906 Partial |
1.3731 |
Saros 153
editThis eclipse is a part of Saros series 153, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 28, 1870. It contains annular eclipses from December 17, 2104 through May 26, 2970. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on August 22, 3114. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity will be produced by member 38 at 7 minutes, 1 seconds on September 5, 2537. All eclipses in this series occur at the Moon’s ascending node of orbit.[7]
Series members 1–19 occur between 1870 and 2200: | ||
---|---|---|
1 | 2 | 3 |
July 28, 1870 |
August 7, 1888 |
August 20, 1906 |
4 | 5 | 6 |
August 30, 1924 |
September 10, 1942 |
September 20, 1960 |
7 | 8 | 9 |
October 2, 1978 |
October 12, 1996 |
October 23, 2014 |
10 | 11 | 12 |
November 3, 2032 |
November 14, 2050 |
November 24, 2068 |
13 | 14 | 15 |
December 6, 2086 |
December 17, 2104 |
December 28, 2122 |
16 | 17 | 18 |
January 8, 2141 |
January 19, 2159 |
January 29, 2177 |
19 | ||
February 10, 2195 |
Metonic series
editThe metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
24 eclipse events between March 25, 1819 and August 20, 1906 | ||||
---|---|---|---|---|
March 25–26 | January 11–12 | October 30–31 | August 18–20 | June 6–7 |
107 | 109 | 111 | 113 | 115 |
March 25, 1819 |
January 12, 1823 |
October 31, 1826 |
August 18, 1830 |
June 7, 1834 |
117 | 119 | 121 | 123 | 125 |
March 25, 1838 |
January 11, 1842 |
October 30, 1845 |
August 18, 1849 |
June 6, 1853 |
127 | 129 | 131 | 133 | 135 |
March 25, 1857 |
January 11, 1861 |
October 30, 1864 |
August 18, 1868 |
June 6, 1872 |
137 | 139 | 141 | 143 | 145 |
March 25, 1876 |
January 11, 1880 |
October 30, 1883 |
August 19, 1887 |
June 6, 1891 |
147 | 149 | 151 | 153 | |
March 26, 1895 |
January 11, 1899 |
October 31, 1902 |
August 20, 1906 |
Tritos series
editThis eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 1928 | ||||
---|---|---|---|---|
May 25, 1808 (Saros 144) |
April 24, 1819 (Saros 145) |
March 24, 1830 (Saros 146) |
February 21, 1841 (Saros 147) |
January 21, 1852 (Saros 148) |
December 21, 1862 (Saros 149) |
November 20, 1873 (Saros 150) |
October 19, 1884 (Saros 151) |
September 18, 1895 (Saros 152) |
August 20, 1906 (Saros 153) |
July 19, 1917 (Saros 154) |
June 17, 1928 (Saros 155) |
Inex series
editThis eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 1964 | ||
---|---|---|
October 19, 1819 (Saros 150) |
September 27, 1848 (Saros 151) |
September 7, 1877 (Saros 152) |
August 20, 1906 (Saros 153) |
July 30, 1935 (Saros 154) |
July 9, 1964 (Saros 155) |
Notes
edit- ^ "August 19–20, 1906 Partial Solar Eclipse". timeanddate. Retrieved 31 July 2024.
- ^ "DIDN'T SEE ANY ECLIPSE OF THE SUN". The Eugene Guard. Eugene, Oregon. 1906-08-20. p. 1. Retrieved 2023-11-01 – via Newspapers.com.
- ^ "ECLIPSE DID NOT AFFECT THE RAYS OF OLD SOL IN OMAHA". Omaha World-Herald. Omaha, Nebraska. 1906-08-20. p. 3. Retrieved 2023-11-01 – via Newspapers.com.
- ^ "What Is a Solar Eclipse?". www.timeanddate.com. Retrieved 2020-04-24.
- ^ "Partial Solar Eclipse of 1906 Aug 20". EclipseWise.com. Retrieved 31 July 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Solar Eclipses of Saros 153". eclipse.gsfc.nasa.gov.
References
edit- Earth visibility chart and eclipse statistics Eclipse Predictions by Fred Espenak, NASA/GSFC