Solar eclipse of December 25, 2000

A partial solar eclipse occurred at the Moon’s descending node of orbit on Monday, December 25, 2000 (also known as the "Christmas 2000 Solar Eclipse"),[1] with a magnitude of 0.7228. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This was also the last solar eclipse of the 20th century.

Solar eclipse of December 25, 2000
Projected partial eclipse from Minneapolis, Minnesota
Map
Type of eclipse
NaturePartial
Gamma1.1367
Magnitude0.7228
Maximum eclipse
Coordinates66°18′N 74°06′W / 66.3°N 74.1°W / 66.3; -74.1
Times (UTC)
Greatest eclipse17:35:57
References
Saros122 (57 of 70)
Catalog # (SE5000)9510

This was the first solar eclipse on Christmas Day since the annular solar eclipse of 1954.[2]

This was the last of four partial solar eclipses in 2000, with the others occurring on February 5, July 1, and July 31.

A partial eclipse was visible for parts of North America and the Caribbean.

Images

edit

 
Animated path

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

December 25, 2000 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 2000 December 25 at 15:27:44.5 UTC
Ecliptic Conjunction 2000 December 25 at 17:22:41.2 UTC
Equatorial Conjunction 2000 December 25 at 17:27:01.0 UTC
Greatest Eclipse 2000 December 25 at 17:35:56.9 UTC
Last Penumbral External Contact 2000 December 25 at 19:44:16.3 UTC
December 25, 2000 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.72279
Eclipse Obscuration 0.62922
Gamma 1.13669
Sun Right Ascension 18h18m29.8s
Sun Declination -23°22'12.5"
Sun Semi-Diameter 16'15.7"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 18h18m47.5s
Moon Declination -22°20'41.9"
Moon Semi-Diameter 14'49.1"
Moon Equatorial Horizontal Parallax 0°54'22.8"
ΔT 64.1 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 2000–January 2001
December 25
Descending node (new moon)
January 9
Ascending node (full moon)
   
Partial solar eclipse
Solar Saros 122
Total lunar eclipse
Lunar Saros 134
edit

Eclipses in 2000

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 122

edit

Inex

edit

Triad

edit

Solar eclipses of 2000–2003

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2000 to 2003
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 July 1, 2000
 
Partial
−1.28214 122
 
Partial projection in Minneapolis, MN, USA
December 25, 2000
 
Partial
1.13669
127
 
Totality in Lusaka, Zambia
June 21, 2001
 
Total
−0.57013 132
 
Partial in Minneapolis, MN, USA
December 14, 2001
 
Annular
0.40885
137
 
Partial in Los Angeles, CA, USA
June 10, 2002
 
Annular
0.19933 142
 
Totality in Woomera, South Australia
December 4, 2002
 
Total
−0.30204
147
 
Annularity in Culloden, Scotland
May 31, 2003
 
Annular
0.99598 152
 
November 23, 2003
 
Total
−0.96381

Saros 122

edit

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 46–68 occur between 1801 and 2200:
46 47 48
 
August 28, 1802
 
September 7, 1820
 
September 18, 1838
49 50 51
 
September 29, 1856
 
October 10, 1874
 
October 20, 1892
52 53 54
 
November 2, 1910
 
November 12, 1928
 
November 23, 1946
55 56 57
 
December 4, 1964
 
December 15, 1982
 
December 25, 2000
58 59 60
 
January 6, 2019
 
January 16, 2037
 
January 27, 2055
61 62 63
 
February 7, 2073
 
February 18, 2091
 
March 1, 2109
64 65 66
 
March 13, 2127
 
March 23, 2145
 
April 3, 2163
67 68
 
April 14, 2181
 
April 25, 2199

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21 March 9 December 25–26 October 13–14 August 1–2
118 120 122 124 126
 
May 21, 1993
 
March 9, 1997
 
December 25, 2000
 
October 14, 2004
 
August 1, 2008
128 130 132 134 136
 
May 20, 2012
 
March 9, 2016
 
December 26, 2019
 
October 14, 2023
 
August 2, 2027
138 140 142 144 146
 
May 21, 2031
 
March 9, 2035
 
December 26, 2038
 
October 14, 2042
 
August 2, 2046
148 150 152 154 156
 
May 20, 2050
 
March 9, 2054
 
December 26, 2057
 
October 13, 2061
 
August 2, 2065
158
 
May 20, 2069

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1837 and 2200
 
April 5, 1837
(Saros 107)
 
March 5, 1848
(Saros 108)
 
February 3, 1859
(Saros 109)
 
December 2, 1880
(Saros 111)
 
August 31, 1913
(Saros 114)
 
July 31, 1924
(Saros 115)
 
June 30, 1935
(Saros 116)
 
May 30, 1946
(Saros 117)
 
April 30, 1957
(Saros 118)
 
March 28, 1968
(Saros 119)
 
February 26, 1979
(Saros 120)
 
January 26, 1990
(Saros 121)
 
December 25, 2000
(Saros 122)
 
November 25, 2011
(Saros 123)
 
October 25, 2022
(Saros 124)
 
September 23, 2033
(Saros 125)
 
August 23, 2044
(Saros 126)
 
July 24, 2055
(Saros 127)
 
June 22, 2066
(Saros 128)
 
May 22, 2077
(Saros 129)
 
April 21, 2088
(Saros 130)
 
March 21, 2099
(Saros 131)
 
February 18, 2110
(Saros 132)
 
January 19, 2121
(Saros 133)
 
December 19, 2131
(Saros 134)
 
November 17, 2142
(Saros 135)
 
October 17, 2153
(Saros 136)
 
September 16, 2164
(Saros 137)
 
August 16, 2175
(Saros 138)
 
July 16, 2186
(Saros 139)
 
June 15, 2197
(Saros 140)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
April 26, 1827
(Saros 116)
 
April 5, 1856
(Saros 117)
 
March 16, 1885
(Saros 118)
 
February 25, 1914
(Saros 119)
 
February 4, 1943
(Saros 120)
 
January 16, 1972
(Saros 121)
 
December 25, 2000
(Saros 122)
 
December 5, 2029
(Saros 123)
 
November 16, 2058
(Saros 124)
 
October 26, 2087
(Saros 125)
 
October 6, 2116
(Saros 126)
 
September 16, 2145
(Saros 127)
 
August 27, 2174
(Saros 128)

References

edit
  1. ^ "December 25, 2000 Partial Solar Eclipse". timeanddate. Retrieved August 10, 2024.
  2. ^ Espenak, Fred. "Partial Solar Eclipse of December 25, 2000". eclipse.gsfc.nasa.gov. NASA. Retrieved November 12, 2023.
  3. ^ "Partial Solar Eclipse of 2000 Dec 25". EclipseWise.com. Retrieved August 10, 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved October 6, 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.
edit
  NODES
HOME 1
languages 1
Note 1
os 68