Template:Metals-metalloids-nonmetals: compare, details

Metals[1] Metalloids Nonmetals[1]
Form and structure
Colour
  • nearly all are shiny and grey-white
  • Cu, Cs, Au: shiny and golden[2]
  • shiny and grey-white[3]
  • most are colourless or dull red, yellow, green, or intermediate shades[4]
  • C, P, Se, I: shiny and grey-white
Reflectivity
  • intermediate to typically high[5][6]
  • zero or low (mostly)[9] to intermediate[10]
Form
Density
  • often low
Deformability (as a solid)
  • often brittle
  • some (C, P, S, Se) have non-brittle forms[n 4]
Poisson's ratio[n 5]
Crystalline structure at freezing point[40]
Packing & coordination number
  • close-packed crystal structures[41]
  • high coordination numbers
  • relatively open crystal structures[42]
  • medium coordination numbers[43]
  • open structures[44]
  • low coordination numbers
Atomic radius
(calculated)[45]
  • intermediate to very large
  • 112–298 pm, average 187
  • small to intermediate: B, Si, Ge, As, Sb, Te
  • 87–123 pm, average 115.5 pm
  • very small to intermediate
  • 31–120 pm, average 76.4 pm
Allotropes[46][n 9]
  • around half form allotropes
  • one (Sn) has a metalloid-like allotrope (grey Sn, which forms below 13.2 °C[47])
  • all or nearly all form allotropes
  • some (e.g. red B, yellow As) are more nonmetallic in nature
Electron-related
Periodic table block
Outer s and p electrons
  • few in number (1–3)
  • except 0 (Pd); 4 (Sn, Pb, Fl); 5 (Bi); 6 (Po)
  • medium number (3–7)
  • high number (4–8)
  • except 1 (H); 2 (He)
Electron bands: (valence, conduction)
  • nearly all have substantial band overlap
  • Bi: has slight band overlap (semimetal)
Electron behaviour
  • "free" electrons (facilitating electrical and thermal conductivity)
  • valence electrons less freely delocalized; considerable covalent bonding present[50]
  • have Goldhammer-Herzfeld criterion[n 10] ratios straddling unity[54][55]
  • no, few, or directionally confined "free" electrons (generally hampering electrical and thermal conductivity)
Electrical conductivity
... as a liquid[63]
  • falls gradually as temperature rises[n 14]
  • increases as temperature rises
Thermodynamics
Thermal conductivity
Temperature coefficient of resistance[n 15]
  • nearly all positive (Pu is negative)[70]
  • nearly all negative (C, as graphite, is positive in the direction of its planes)[73][74]
Melting point
  • mostly high
  • mostly high
  • mostly low
Melting behaviour
  • volume generally expands[75]
  • some contract, unlike (most)[76] metals[77]
  • volume generally expands[75]
Enthalpy of fusion
  • low to high
  • intermediate to very high
  • very low to low (except C: very high)
Elemental chemistry
Overall behaviour
  • metallic
  • nonmetallic
Ion formation
  • tend to form anions
Bonds
  • seldom form covalent compounds
  • form many covalent compounds
Oxidation number
  • nearly always positive
  • positive or negative[83]
  • positive or negative
Ionization energy
  • relatively low
  • high
Electronegativity
  • usually low
  • high
Combined form chemistry
With metals
With carbon
  • same as metals
With hydrogen (hydrides)
  • covalent, volatile hydrides[92]
  • covalent, gaseous or liquid hydrides
With oxygen (oxides)
  • solid, liquid or gaseous
  • few glass formers (P, S, Se)[97]
  • covalent, acidic
With sulfur (sulfates)
With halogens (halides, esp. chlorides) (see also[118])
  • typically ionic, involatile
  • generally insoluble in organic solvents
  • mostly water-soluble (not hydrolysed)
  • more covalent, volatile, and susceptible to hydrolysis[n 22] and organic solvents with higher halogens and weaker metals[119][120]
  • covalent, volatile[121]
  • usually dissolve in organic solvents[122]
  • partly or completely hydrolysed[123]
  • some reversibly hydrolysed[123]
  • covalent, volatile
  • usually dissolve in organic solvents
  • generally completely or extensively hydrolyzed
  • not always susceptible to hydrolysis if parent nonmetal at maximum covalency for period e.g. CF4, SF6 (then nil reaction)[124]
Environmental chemistry
Molar composition of Earth's ecosphere[n 23]
  • about 14%, mostly Al, Na, Mg, Ca, Fe, K
  • about 17%, mostly Si
  • about 69%, mostly O, H
Primary form on Earth
Required by mammals
  • large amounts needed: Na, Mg, K, Ca
  • trace amounts needed of some others
  • trace amounts needed: B, Si, As
  • large amounts needed: H, C, N, O, P, S, Cl
  • trace amounts needed: Se, Br, I, possibly F
  • only noble gases not needed
Composition of the human body, by weight
  • about 1.5% Ca
  • traces of most others through 92U
  • about 97% O, C, H, N, P
  • others detectable except noble gases

Footnotes

edit
  1. ^ At standard pressure and temperature, for the elements in their most thermodynamically stable forms, unless otherwise noted
  2. ^ Copernicium is reported to be the only metal known to be a gas at room temperature.[13]
  3. ^ Whether polonium is ductile or brittle is unclear. It is predicted to be ductile based on its calculated elastic constants.[18] It has a simple cubic crystalline structure. Such a structure has few slip systems and "leads to very low ductility and hence low fracture resistance".[19]
  4. ^ Carbon as exfoliated (expanded) graphite,[21] and as metre-long carbon nanotube wire;[22] phosphorus as white phosphorus (soft as wax, pliable and can be cut with a knife, at room temperature);[23] sulfur as plastic sulfur;[24] and selenium as selenium wires.[25]
  5. ^ For polycrystalline forms of the elements unless otherwise noted. Determining Poisson's ratio accurately is a difficult proposition and there could be considerable uncertainty in some reported values.[26]
  6. ^ Beryllium has the lowest known value (0.0476) among elemental metals; indium and thallium each have the highest known value (0.46). Around one third show a value ≥ 0.33.[27]
  7. ^ Boron 0.13;[28] silicon 0.22;[29] germanium 0.278;[30] amorphous arsenic 0.27;[31] antimony 0.25;[32] tellurium ~0.2.[33]
  8. ^ Graphitic carbon 0.25;[34] [diamond 0.0718];[35] black phosphorus 0.30;[36] sulfur 0.287;[37] amorphous selenium 0.32;[38] amorphous iodine ~0.[39]
  9. ^ At atmospheric pressure, for elements with known structures
  10. ^ The Goldhammer-Herzfeld criterion is a ratio that compares the force holding an individual atom's valence electrons in place with the forces, acting on the same electrons, arising from interactions between the atoms in the solid or liquid element. When the interatomic forces are greater than or equal to the atomic force, valence electron itinerancy is indicated. Metallic behaviour is then predicted.[51] Otherwise nonmetallic behaviour is anticipated. The Goldhammer-Herzfeld criterion is based on classical arguments.[52] It nevertheless offers a relatively simple first order rationalization for the occurrence of metallic character among the elements.[53]
  11. ^ Metals have electrical conductivity values of from 6.9 × 103 S•cm−1 for manganese to 6.3 × 105 for silver.[56]
  12. ^ Metalloids have electrical conductivity values of from 1.5 × 10−6 S•cm−1 for boron to 3.9 × 104 for arsenic.[58] If selenium is included as a metalloid the applicable conductivity range would start from ~10−9 to 10−12 S•cm−1.[59][60][61]
  13. ^ Nonmetals have electrical conductivity values of from ~10−18 S•cm−1 for the elemental gases to 3 × 104 in graphite.[62]
  14. ^ Mott and Davis[64] note however that 'liquid europium has a negative temperature coefficient of resistance' i.e. that conductivity increases with rising temperature
  15. ^ At or near room temperature
  16. ^ Chedd[88] defines metalloids as having electronegativity values of 1.8 to 2.2 (Allred-Rochow scale). He included boron, silicon, germanium, arsenic, antimony, tellurium, polonium and astatine in this category. In reviewing Chedd's work, Adler[89] described this choice as arbitrary, given other elements have electronegativities in this range, including copper, silver, phosphorus, mercury, and bismuth. He went on to suggest defining a metalloid simply as, 'a semiconductor or semimetal' and 'to have included the interesting materials bismuth and selenium in the book'.
  17. ^ Phosphorus is known to form a carbide in thin films.
  18. ^ See, for example, the sulfates of the transition metals,[98] the lanthanides[99] and the actinides.[100]
  19. ^ Sulfates of osmium have not been characterized with any great degree of certainty.[101]
  20. ^ Common metalloids: Boron is reported to be capable of forming an oxysulfate (BO)2SO4,[102] a bisulfate B(HSO4)3[103] and a sulfate B2(SO4)3.[104] The existence of a sulfate has been disputed.[105] In light of the existence of silicon phosphate, a silicon sulfate might also exist.[106] Germanium forms an unstable sulfate Ge(SO4)2 (d 200 °C).[107] Arsenic forms oxide sulfates As2O(SO4)2 (= As2O3.2SO3)[108] and As2(SO4)3 (= As2O3.3SO3).[109] Antimony forms a sulfate Sb2(SO4)3 and an oxysulfate (SbO)2SO4.[110] Tellurium forms an oxide sulfate Te2O3(SO)4.[111] Less common: Polonium forms a sulfate Po(SO4)2.[112] It has been suggested that the astatine cation forms a weak complex with sulfate ions in acidic solutions.[113]
  21. ^ Hydrogen forms hydrogen sulfate H2SO4. Carbon forms (a blue) graphite hydrogen sulfate C+
    24
    HSO
    4
     • 2.4H2SO4.[114]
    Nitrogen forms nitrosyl hydrogen sulfate (NO)HSO4 and nitronium (or nitryl) hydrogen sulfate (NO2)HSO4.[115] There are indications of a basic sulfate of selenium SeO2.SO3 or SeO(SO4).[116] Iodine forms a polymeric yellow sulfate (IO)2SO4.[117]
  22. ^ layer-lattice types often reversibly so
  23. ^ Based on a table of the elemental composition of the biosphere, and lithosphere (crust, atmosphere, and seawater) in Georgievskii,[125] and the masses of the crust and hydrosphere give in Lide and Frederikse.[126] The mass of the biosphere is negligible, having a mass of about one billionth that of the lithosphere.[citation needed] "The oceans constitute about 98 percent of the hydrosphere, and thus the average composition of the hydrosphere is, for all practical purposes, that of seawater."[127]
  24. ^ Hydrogen gas is produced by some bacteria and algae and is a natural component of flatus. It can be found in the Earth's atmosphere at a concentration of 1 part per million by volume.
  25. ^ Fluorine can be found in its elemental form, as an occlusion in the mineral antozonite[129]

References

  1. ^ a b Kneen, Rogers & Simpson, 1972, p. 263. Columns 2 (metals) and 4 (nonmetals) are sourced from this reference unless otherwise indicated.
  2. ^ Russell & Lee 2005, p. 147
  3. ^ a b c Rochow 1966, p. 4
  4. ^ Pottenger & Bowes 1976, p. 138
  5. ^ Askeland, Fulay & Wright 2011, p. 806
  6. ^ Born & Wolf 1999, p. 746
  7. ^ Lagrenaudie 1953
  8. ^ Rochow 1966, pp. 23, 25
  9. ^ Burakowski & Wierzchoń 1999, p. 336
  10. ^ Olechna & Knox 1965, pp. A991‒92
  11. ^ Stoker 2010, p. 62
  12. ^ Chang 2002, p. 304. Chang speculates that the melting point of francium would be about 23 °C.
  13. ^ New Scientist 1975; Soverna 2004; Eichler, Aksenov & Belozeroz et al. 2007; Austen 2012
  14. ^ Hunt 2000, p. 256
  15. ^ Sisler 1973, p. 89
  16. ^ Hérold 2006, pp. 149–150
  17. ^ Russell & Lee 2005
  18. ^ Legit, Friák & Šob 2010, p. 214118-18
  19. ^ Manson & Halford 2006, pp. 378, 410
  20. ^ a b McQuarrie & Rock 1987, p. 85
  21. ^ Chung 1987; Godfrin & Lauter 1995
  22. ^ Cambridge Enterprise 2013
  23. ^ Faraday 1853, p. 42; Holderness & Berry 1979, p. 255
  24. ^ Partington 1944, p. 405
  25. ^ Regnault 1853, p. 208
  26. ^ Christensen 2012, p. 14
  27. ^ Gschneidner 1964, pp. 292‒93.
  28. ^ Qin et al. 2012, p. 258
  29. ^ Hopcroft, Nix & Kenny 2010, p. 236
  30. ^ Greaves et al. 2011, p. 826
  31. ^ Brassington et al. 1980
  32. ^ Martienssen & Warlimont 2005, p. 100
  33. ^ Witczak 2000, p. 823
  34. ^ Marlowe 1970, p. 6;Slyh 1955, p. 146
  35. ^ Klein & Cardinale 1992, pp. 184‒85
  36. ^ Appalakondaiah et al. 2012, pp. 035105‒6
  37. ^ Sundara Rao 1950; Sundara Rao 1954; Ravindran 1998, pp. 4897‒98
  38. ^ Lindegaard & Dahle 1966, p. 264
  39. ^ Leith 1966, pp. 38‒39
  40. ^ Donohoe 1982; Russell & Lee 2005
  41. ^ Gupta et al. 2005, p. 502
  42. ^ Walker, Newman & Enache 2013, p. 25
  43. ^ Wiberg 2001, p. 143
  44. ^ Batsanov & Batsanov 2012, p. 275
  45. ^ Clementi & Raimondi 1963; Clementi, Raimondi & Reinhardt 1967
  46. ^ Addison 1964; Donohoe 1982
  47. ^ Vernon 2013, p. 1704
  48. ^ Parish 1977, pp. 34, 48, 112, 142, 156, 178
  49. ^ a b Emsley 2001, p. 12
  50. ^ Russell 1981, p. 628
  51. ^ Herzfeld 1927; Edwards 2000, pp. 100–103
  52. ^ Edwards 1999, p. 416
  53. ^ Edwards & Sienko 1983, p. 695
  54. ^ a b Edwards & Sienko 1983, p. 691
  55. ^ Edwards et al. 2010
  56. ^ Desai, James & Ho 1984, p. 1160; Matula 1979, p. 1260
  57. ^ Choppin & Johnsen 1972, p. 351
  58. ^ Schaefer 1968, p. 76; Carapella 1968, p. 30
  59. ^ Glazov, Chizhevskaya & Glagoleva 1969 p. 86
  60. ^ Kozyrev 1959, p. 104
  61. ^ Chizhikov & Shchastlivyi 1968, p. 25
  62. ^ Bogoroditskii & Pasynkov 1967, p. 77; Jenkins & Kawamura 1976, p. 88
  63. ^ Rao & Ganguly 1986
  64. ^ Mott & Davis 2012, p. 177
  65. ^ Antia 1998
  66. ^ Cverna 2002, p.1
  67. ^ Cordes & Scaheffer 1973, p. 79
  68. ^ Hill & Holman 2000, p. 42
  69. ^ Tilley 2004, p. 487
  70. ^ Russell & Lee 2005, p. 466
  71. ^ Orton 2004, pp. 11–12
  72. ^ Zhigal'skii & Jones 2003, p. 66: 'Bismuth, antimony, arsenic and graphite are considered to be semimetals ... In bulk semimetals ... the resistivity will increase with temperature ... to give a positive temperature coefficient of resistivity ...'
  73. ^ Jauncey 1948, p. 500: 'Nonmetals mostly have negative temperature coefficients. For instance, carbon ... [has a] resistance [that] decreases with a rise in temperature. However, recent experiments on very pure graphite, which is a form of carbon, have shown that pure carbon in this form behaves similarly to metals in regard to its resistance.'
  74. ^ Reynolds 1969, pp. 91–92
  75. ^ a b Wilson 1966, p. 260
  76. ^ Wittenberg 1972, p. 4526
  77. ^ Habashi 2003, p. 73
  78. ^ Bailar et al. 1989, p. 742
  79. ^ Cox 2004, p. 27
  80. ^ Hiller & Herber 1960, inside front cover; p. 225
  81. ^ Beveridge et al. 1997, p. 185
  82. ^ a b Young & Sessine 2000, p. 849
  83. ^ Bailar et al. 1989, p. 417
  84. ^ Metcalfe, Williams & Castka 1966, p. 72
  85. ^ Chang 1994, p. 311
  86. ^ Pauling 1988, p. 183
  87. ^ Mann et al. 2000, p. 2783
  88. ^ Chedd 1969, pp. 24–25
  89. ^ Adler 1969, pp. 18–19
  90. ^ Hultgren 1966, p. 648
  91. ^ Bassett et al. 1966, p. 602
  92. ^ Rochow 1966, p. 34
  93. ^ Martienssen & Warlimont 2005, p. 257
  94. ^ Sidorov 1960
  95. ^ Brasted 1974, p. 814
  96. ^ Atkins 2006 et al., pp. 8, 122–23
  97. ^ Rao 2002, p. 22
  98. ^ Wickleder, Pley & Büchner 2006; Betke & Wickleder 2011
  99. ^ Cotton 1994, p. 3606
  100. ^ Keogh 2005, p. 16
  101. ^ Raub & Griffith 1980, p. 167
  102. ^ Nemodruk & Karalova 1969, p. 48
  103. ^ Sneed 1954, p. 472; Gillespie & Robinson 1959, p. 407
  104. ^ Zuckerman & Hagen 1991, p. 303
  105. ^ Sanderson 1967, p. 178
  106. ^ Iler 1979, p. 190
  107. ^ Sanderson 1960, p. 162; Greenwood & Earnshaw 2002, p. 387
  108. ^ Mercier & Douglade 1982
  109. ^ Douglade & Mercier 1982
  110. ^ Wiberg 2001, p. 764
  111. ^ Wickleder 2007, p. 350
  112. ^ Bagnall 1966, pp. 140−41
  113. ^ Berei & Vasáros 1985, pp. 221, 229
  114. ^ Wiberg 2001, p. 795
  115. ^ Lidin 1996, pp. 266, 270; Brescia et al. 1975, p. 453
  116. ^ Greenwood & Earnshaw 2002, p. 786
  117. ^ Furuseth et al. 1974
  118. ^ Holtzclaw, Robinson & Odom 1991, pp. 706–07; Keenan, Kleinfelter & Wood 1980, pp. 693–95
  119. ^ Kneen, Rogers & Simpson 1972, p. 278
  120. ^ Heslop & Robinson 1963, p. 417
  121. ^ Rochow 1966, pp. 28–29
  122. ^ Bagnall 1966, pp. 108, 120; Lidin 1996, passim
  123. ^ a b Smith 1921, p. 295; Sidgwick 1950, pp. 605, 608; Dunstan 1968, pp. 408, 438
  124. ^ Dunstan 1968, pp. 312, 408
  125. ^ Georgievskii 1982, p. 58
  126. ^ Lide & Frederikse 1998, p. 14–6
  127. ^ Hem 1985, p. 7
  128. ^ Perkins 1998, p. 350
  129. ^ Sanderson 2012
  NODES
Note 6