Thallides are compounds containing anions composed of thallium. There are several thallium atoms in a cluster, and it does not occur as a single Tl in thallides.[1][2] They are a subclass of trielides,[2] which also includes gallides and indides.[3] A more general classification is polar intermetallics, as clusters contain delocalized multicentre bonds.[4] Thallides were discovered by Eduard Zintl in 1932.[5]

Mixed anion compounds with thallides include halides (bromides and chlorides),[6] oxides,[7] and tetrelates (silicate, germanate).[8]

Production

edit

Thallide compounds can be produced by melting metals together in a tantalum crucible under an inert argon atmosphere.[3] However if arsenic is included in the mix, it can react with the crucible wall.[9]

A low temperature production route, is to dissolve an alkali metal in liquid ammonia, and use that to reduce a thallium salt, like thallium iodide.[10]

Properties

edit

Thallide compounds are dense, dense to X-rays and usually metallic grey or black in appearance.

Thallide clusters mostly do not follow Wade-Mingos rules or the Zintl–Klemm concept, as they have too small a negative charge. They can be called "hypoelectronic".[11]

Reactions

edit

In liquid ammonia, oxidation occurs yielding metal amides, and thallium metal.[2]

Thallides react with water and air.[2]

List

edit
formula system space group unit cell volume density comment ref
LiTl cubic Pm3m a=3.43 melts at 508 °C [12]
Li2Tl orthorhombic Cmcm a=4.741 b=10.023 c=4.786 decomposes at 381 °C [5][12]
Li5Tl2 R3m a=4.716 c=20.399 melts at 448 °C [5][12]
Li3Tl cubic Fm3m a=6.67 melts at 447 °C [5][12]
Li22Tl5 (Li4Tl) cubic F43m a=20.003 [5][12]
NaTl cubic Fd3m 3D diamond structure mesh for Tl; melts at 305 °C [2][10][12]
NaTl tetragonal I41/amd a=5.2341 c=7.5290 Z=4 206.26 grey; [10][12]
Na2Tl orthorhombic C2221 a=13.9350 b=8.8797 c=11.6927 [Tl4]8– tetrahedra; melts at 154 °C [2][12]
NaTl2 decomposes at 154 °C [12]
Na6Tl cubic F43m a=24.154 melts at 77.4 [12]
KTl orthorhombic Cmca a=15.239 b=15.069 c=8.137 [Tl6]6– Compressed octahedra; melts incongruently at 268 °C [2][12]
K5Tl8 melts at 273 °C [12]
K10Tl7 monoclinic P21/c a = 10.132 b = 22.323 c = 13.376 β = 93.14° Z=4 [Tl7]7– pentagonal bipyramid [2]
K10Tl6O2 [Tl6]6– [2]
K8Tl11 rhombohedral R3c a=9.991 c=5.084 [Tl11]7– pentacapped trigonal prism; melts at 320 °C [2][12]
K49Tl108 Pm3 a = 17.28.7 Z=1 [13]
K5Tl17 orthorhombic Cccm [5]
K6Tl17 orthorhombic Cccm a = 16.625 b = 23.594 c = 15.369 Z = 8 6028 8.173 @22 °C; metallic; ρ270 = 22.6 μΩ·cm, α = 0.0023 K-1 [14]
K10Tl6O2 orthorhombic Cmcm a=8.3755 b=32.102 c=8.8634 Z=4 2383.1 4.597 dark grey [7]
Na7KTl4 orthorhombic Pbam a=16.2860 c=11.2771 Z=8 2991.1 4.519 [Tr4]8− [15]
Na9K16Tl~25 [2]
[Et4N]2[{Tl(Fe(CO)4)2}2] [16]
[(PPh2)2N]2[Tl2Fe6(CO)24] monoclinic P21/c a=17.120 b=50.71 c=16.785 β=116.90° [16]
[Et4N]4[Tl4Fe8(CO)30] [16]
[Et4N]6[Tl6Fe10(CO)36] [16]
K8ZnTl10 band gap 0.17 eV [3]
K8GaTl10 tetragonal P4/nnc a=10.1858 c=13.6371 Z=2 1414.9 5.695 [3]
K49Ga2Tl108 [3]
Rb8Tl11 [Tl11]7– pentacapped trigonal prism [2]
Rb15Tl27 P62m [17]
Rb17Tl41 hexagonal Fd3m a = 10.3248 c = 17.558 [5]
Rb10Tl6O2 orthorhombic Cmcm a=8.7176 b=33.2934 = 9.1242 2648.19 5.300 dark grey; [Tl6]6– [2][7]
Na7RbTl4 orthorhombic Pbam a=16.3584 b=16.3581 c=11.3345 Z=8 3033.0 4.660 @123K [Tl4]8− tetrahedra [18]
K4Rb4Tl11Cl0.1 rhombohedral R3c a=10.0948 c=51.027 Z=6 4503.3 6.087 [6]
Rb8GaTl10 tetragonal P4/nnc a=10.4714 c=14.0007 Z=2 1535.2 6.051 [17]
Rb49Ga2Tl108 [3]
Sr3Tl5 orthorhombic Cmcm a = 10.604 b = 8.675 c = 10.985 Z = 4 1010.5 8.445 silvery, brittle; [Tl5]6– square pyramidal clusters [4]
YMgTl hexagonal P62m a=7.505 c=4.5985 Z=3 7.05 metallic; black powder [19]
Pd3Tl tetragonal I4/mmm a=4.10659 c=15.3028 Z = 4 258.07 Palladothallite [20]
SrPdTl2 orthorhombic Cmcm a = 4.486 b = 10.991 c = 8.154 Z = 4 [21]
Na13(Cd~0.70Tl~0.30)27 cubic Im3 a ≃ 15.92 Z = 4 Tl from 0.24 to 0.33 [22]
K14Cd9Tl21 hexagonal P2m a = 9.884 c =17.173 Z = 2 [23]
Na9K16Tl18Cd3 hexagonal P63/mmc a = 11.136 c = 29.352 Z=2 [24]
Rb5Cd2Tl11 orthorhombic Amm2 a = 5.5999 b = 17.603 c = 12.896 Z = 2 [25]
Na12K18In53Tl7 R3m a=16.846 c=43.339 Z=4 [26]
Na6TlSb4 monoclinic C2/c 15.154 b = 10.401 c = 17.413 β = 113.57° Z = 8 metallic [27]
K6Tl2Sb3 monoclinic C2/c a = 9.951 b = 17.137 c = 19.640 β = 104.26° Z = 8 [27][28]
CsTl orthorhombic Fddd [Tl6]6– [2]
Cs3.45K3.55Tl7 tetragonal I41/a a = 13.6177 c = 25.5573 Z = 8 4739.3 5.681 [Tl7]7− [2]
Cs7.29K5.71Tl13 monoclinic C2/c a = 30.7792 b = 11.000 c = 14.0291 β = 112.676° Z = 4 4382.7 5.835 [Tl7]7− and [Tl6]6– [2]
K3.826Cs4.174Tl11 [2]
Cs8Tl11 [Tl11]7– pentacapped trigonal prism [2]
Cs15Tl27 hexagonal P62m [5][17]
Cs4Tl2O trigonal R3m a = 11.986 c = 20.370 Z = 9 2534.3 5.640 silvery black; stable to 523 °C; decomposes in air [29]
Cs18Tl8O6 [29]
Cs10Tl6SiO4 monoclinic P21/c a=18.9121 b=11.4386 c=14.8081 β=90.029° [Tl6]6– [2][8]
Cs10Tl6GeO4 monoclinic P21/c a=19.034 b=11.4883 c=14.8633 β=90.033° [Tl6]6– [2][8]
Cs10Tl6SnO3 orthorhombic Pnma a=14.8908Å b=19.052 c=11.5855 [Tl6]6– [2][8]
Rb14CsTl27 hexagonal [17]
Cs8GaTl10 tetragonal P4/nnc a=10.777 c=14.354 Z=2 1667.3 6.328 [3]
Cs5Cd2Tl11 orthorhombic Amm2 a = 5.6107 b = 18.090 c = 13.203 Z = 2 [25]
Cs8Tl11Pd0.84 rhombohedral R3c a = 10.6l0 c = 54.683 Z = 6 [30]
Cs8Tl11Cl0.8 rhombohedral R3c a=10.4691 c=53.297 Z = 6 5058.8 6.578 [6]
Cs8Tl11Br0.9 rhombohedral R3c a=10.5608 c=53.401 Z = 6 5157.9 6.539 [6]
Cs5Rb3Tl11Cl0.5 rhombohedral R3c a=10.3791 c=52.437 Z = 6 4892.0 6.502 [6]
Cs5.7K2.3Tl11Cl0.6 rhombohedral R3c a=10.3291 c=51.909 Z = 6 4796.3 6.469 [6]
BaTl2 hexagonal P63/mmc [31]
BaTl4 monoclinic C2/m a = 12.408 b = 5.351 c = 10.383 β = 116.00° Z = 4 519.6 silvery [32]
LaMgTl hexagonal P62m a=7.813 c=4.7784 Z=3 7.25 metallic; black powder [19]
CeMgTl hexagonal P62m a=7.741 c=4.7375 Z=3 7.47 metallic; black powder [19]
PrMgTl hexagonal P62m a=7.702 c=4.7150 Z=3 242.9 7.60 metallic; black powder [19]
NdMgTl hexagonal P62m a=7.666 c=4.6945 Z=3 242.9 7.74 metallic; black powder [19]
SmMgTl hexagonal P62m a=7.603 c=4.6593 Z=3 8.10 metallic; black powder [19]
EuTl2 [33]
EuPdTl2 orthorhombic Cmcm a=4.466 b=10.767 c=8.120 Z=4 3905 11.35 silvery metallic [33]
GdMgTl hexagonal P62m a=7.556 c=4.6312 Z=3 229.9 7.74 metallic; black powder [19]
TbMgTl hexagonal P62m a=7.518 c=4.6088 Z=3 226.7 8.52 metallic; black powder [19]
DyMgTl hexagonal P62m a=7.495 c=4.5932 Z=3 224.1 8.69 metallic; black powder [19]
HoMgTl hexagonal P62m a=7.471 c=4.5835 Z=3 metallic; black powder [19]
ErMgTl hexagonal P62m a=7.449 c=4.5715 Z=3 metallic; black powder [19]
TmMgTl hexagonal P62m a=7.432 c=4.5541 Z=3 metallic; black powder [19]
LuMgTl hexagonal P62m a=7.402 c=4.5400 Z=3 metallic; black powder [19]
K5TaAs4Tl2 orthorhombic Pnma [34]
Rb5TaAs4Tl2 orthorhombic Pnma a = 19.196 b = 11.104 c = 7.894 Z = 4 spiro at Ta [34]
SrPtTl2 orthorhombic Cmcm a = 4.491 b = 10.990 c = 8.140 Z = 4 [21]
Na12K38Tl48Au2 Tl7 and Tl9 cluster + auride [2]
K3Au5Tl orthorhombic Imma a = 5.595 b =19.706 c =8.430 Z = 4 [9]
Rb2Au3Tl orthorhombic Pmma a = 5.660 b = 6.741 c = 9.045 Z = 4 [9]
BaAuTl3 tetragonal I4/mmm a = 4.8604 c = 12.180 Z = 2 [35]
Ba2AuTl7 orthorhombic Pmma a=21.919 b=5.193 c=10.447 [36]
BaAu0.40Tl1.60 orthorhombic Imma a = 5.140 b = 8.317 c = 8.809 Z = 4 [31]
BaHg0.80Tl3.20 monoclinic C2/m a=12.230 b=5.234 c=10.379 β = 115.272 600.3 10.523 silvery [32]

References

edit
  1. ^ Thayer, John S. (2010). "Relativistic Effects and the Chemistry of the Heavier Main Group Elements". Relativistic Methods for Chemists. Challenges and Advances in Computational Chemistry and Physics. Vol. 10. Springer Netherlands. p. 73. doi:10.1007/978-1-4020-9975-5_2. ISBN 978-1-4020-9975-5.
  2. ^ a b c d e f g h i j k l m n o p q r s t u v Schwinghammer, Vanessa F.; Gärtner, Stefanie (28 February 2024). "[Tl 7 ] 7– Clusters in Mixed Alkali Metal Thallides Cs 7.29 K 5.71 Tl 13 and Cs 3.45 K 3.55 Tl 7". Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c04034. PMC 11523231. PMID 38416695.
  3. ^ a b c d e f g Lehmann, Bernard; Röhr, Caroline (2022-12-13). "Endohedral Ten-Vertex Clusters [Ga@Tl 10 ] 8− in the Mixed Trielides A 8 GaTl 10 ( A =K, Rb, Cs)". Zeitschrift für anorganische und allgemeine Chemie. 648 (23). doi:10.1002/zaac.202200204. ISSN 0044-2313.
  4. ^ a b Li, DongXu; Luo, GengGeng; Xiao, ZiJing; Dai, JingCao (January 2012). "Synthesis, structure and bonding of the hypoelectronic cluster compound Sr3Tl5". Science China Chemistry. 55 (1): 131–137. doi:10.1007/s11426-011-4382-z. ISSN 1674-7291.
  5. ^ a b c d e f g h Gärtner, Stefanie (2020-11-07). "Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides". Crystals. 10 (11): 1013. doi:10.3390/cryst10111013. ISSN 2073-4352.
  6. ^ a b c d e f Gärtner, Stefanie; Tiefenthaler, Susanne; Korber, Nikolaus; Stempfhuber, Sabine; Hischa, Birgit (2018-08-10). "Structural Chemistry of Halide including Thallides A8Tl11X1−n (A = K, Rb, Cs; X = Cl, Br; n = 0.1–0.9)". Crystals. 8 (8): 319. doi:10.3390/cryst8080319. ISSN 2073-4352.
  7. ^ a b c Karpov, Andrey; Jansen, Martin (2006). "A10Tl6O2(A = K, Rb) cluster compounds combining structural features of thallium cluster anions and of alkali metal sub-oxides". Chemical Communications (16): 1706–1708. doi:10.1039/b601802e. ISSN 1359-7345. PMID 16609778.
  8. ^ a b c d Saltykov, Vyacheslav; Nuss, Jürgen; Jansen, Martin (July 2011). "Cs 10 Tl 6 SiO 4 , Cs 10 Tl 6 GeO 4 , and Cs 10 Tl 6 SnO 3 – First Oxotetrelate Thallides, Double Salts Containing "Hypoelectronic" [Tl 6 ] 6– Clusters". Zeitschrift für anorganische und allgemeine Chemie. 637 (9): 1163–1168. doi:10.1002/zaac.201000358. ISSN 0044-2313.
  9. ^ a b c Li, Bin; Kim, Sung-Jin; Miller, Gordon J.; Corbett, John D. (2009-07-20). "Gold Tetrahedra as Building Blocks in K 3 Au 5 Tr (Tr = In, Tl) and Rb 2 Au 3 Tl and in Other Compounds: A Broad Group of Electron-Poor Intermetallic Phases". Inorganic Chemistry. 48 (14): 6573–6583. doi:10.1021/ic9004856. ISSN 0020-1669. PMID 20507109.
  10. ^ a b c Tiefenthaler, Susanne; Korber, Nikolaus; Gärtner, Stefanie (2019-04-25). "Synthesis of the Tetragonal Phase of Zintl's NaTl and Its Structure Determination from Powder Diffraction Data". Materials. 12 (8): 1356. Bibcode:2019Mate...12.1356T. doi:10.3390/ma12081356. ISSN 1996-1944. PMC 6515420. PMID 31027267.
  11. ^ Wang, Fei; Wedig, Ulrich; Prasad, Dasari L. V. K.; Jansen, Martin (5 December 2012). "Deciphering the Chemical Bonding in Anionic Thallium Clusters". Journal of the American Chemical Society. 134 (48): 19884–19894. doi:10.1021/ja309852f. PMID 23151038.
  12. ^ a b c d e f g h i j k l m Sangster, James (February 2018). "The Systems Li-Tl, Na-Tl and K-Tl". Journal of Phase Equilibria and Diffusion. 39 (1): 74–86. doi:10.1007/s11669-017-0609-9. ISSN 1547-7037.
  13. ^ Cordier, Gerhard; Müller, Volker (1993-08-01). "Darstellung und Kristallstruktur von K 49 Tl 108 / Preparation and Crystal Structure of K 49 T1 108". Zeitschrift für Naturforschung B. 48 (8): 1035–1040. doi:10.1515/znb-1993-0802. ISSN 1865-7117.
  14. ^ Kaskel, Stefan; Dong, Zhen-Chao; Klem, Michael T.; Corbett, John D. (2003-03-01). "Synthesis and Structure of the Metallic K 6 Tl 17 : A Layered Tetrahedral Star Structure Related to That of Cr 3 Si". Inorganic Chemistry. 42 (6): 1835–1841. doi:10.1021/ic020667h. ISSN 0020-1669. PMID 12639115.
  15. ^ Janesch, Melissa; Schwinghammer, Vanessa F.; Shenderovich, Ilya G.; Gärtner, Stefanie (2023-11-02). "Synthesis and characterization of ternary trielides Na 7 K Tr 4 [ Tr =In or Tl] including [ Tr 4 ] 8− Tetrahedra". Zeitschrift für anorganische und allgemeine Chemie. 649 (21). doi:10.1002/zaac.202300112. ISSN 0044-2313.
  16. ^ a b c d Whitmire, Kenton H.; Guzman-Jimenez, Ilse Y.; Saillard, Jean-Yves; Kahlal, Samia (December 2000). "Synthesis, characterization, structural and theoretical analysis of a series of electron deficient, monomeric thallium iron carbonylate isostructural and isolobal to diiron nonacarbonyl". Journal of Organometallic Chemistry. 614–615: 243–254. doi:10.1016/S0022-328X(00)00629-X.
  17. ^ a b c d Dong, Zhen-Chao; Corbett, John D. (1996-01-01). "A 15 Tl 27 (A = Rb, Cs): A Structural Type Containing Both Isolated Clusters and Condensed Layers Based on the Tl 11 Fragment. Syntheses, Structure, Properties, and Band Structure". Inorganic Chemistry. 35 (6): 1444–1450. doi:10.1021/ic951086d. ISSN 0020-1669. PMID 11666357.
  18. ^ Schwinghammer, Vanessa F.; Janesch, Melissa; Korber, Nikolaus; Gärtner, Stefanie (2022-12-27). "Na 7 RbTl 4 – A New Ternary Zintl Phase Containing [Tl 4 ] 8− Tetrahedra". Zeitschrift für anorganische und allgemeine Chemie. 648 (24). doi:10.1002/zaac.202200332. ISSN 0044-2313.
  19. ^ a b c d e f g h i j k l m Kraft, Rainer; Pöttgen, Rainer (2005-03-01). "Ternary Thallides REMgTl (Re = Y, La – Nd, Sm, Gd – Tm, Lu)". Zeitschrift für Naturforschung B. 60 (3): 265–270. doi:10.1515/znb-2005-0305. ISSN 1865-7117.
  20. ^ Grokhovskaya, Tatiana L.; Vymazalová, Anna; Laufek, František; Stanley, Chris J.; Borisovskiy, Sergey Ye. (2021-11-01). "Palladothallite, Pd3Tl, a new mineral from the Monchetundra layered intrusion, Kola Peninsula, Russia". The Canadian Mineralogist. 59 (6): 1821–1832. Bibcode:2021CaMin..59.1821G. doi:10.3749/canmin.2100002. ISSN 1499-1276.
  21. ^ a b Liu, Shengfeng; Corbett, John D. (2003-08-01). "Synthesis, Structure, and Properties of the New Intermetallic Compounds SrPdTl 2 and SrPtTl 2". Inorganic Chemistry. 42 (16): 4898–4901. doi:10.1021/ic030089k. ISSN 0020-1669. PMID 12895113.
  22. ^ Li, Bin; Corbett, John D. (2004-06-01). "Synthesis, Structure, and Characterization of a Cubic Thallium Cluster Phase of the Bergman Type, Na 13 (Cd ~ 0.70 Tl ~ 0.30 ) 27". Inorganic Chemistry. 43 (12): 3582–3587. doi:10.1021/ic0400033. ISSN 0020-1669. PMID 15180410.
  23. ^ Tillard-Charbonnel, Monique; Chahine, Abdelkrim; Belin, Claude; Rousseau, Roger; Canadell, Enric; Rousseau, R. (May 1997). "Structure and Chemical Bonding in K 14 Cd 9 Tl 21 , a Compound Containing Both Isolated Tl 7- 11 Clusters and 2  [Cd 9 Tl 7- 10 ] Metallic Layers". Chemistry – A European Journal. 3 (5): 799–806. doi:10.1002/chem.19970030520. ISSN 0947-6539.
  24. ^ Huang, DaPing; Corbett, John D. (1999-01-01). "Na 9 K 16 Tl 18 Cd 3 : A Novel Phase Containing Tl 8 Cd 3 10 - and Tl 5 7 - Clusters 1". Inorganic Chemistry. 38 (2): 316–320. doi:10.1021/ic9807792. ISSN 0020-1669.
  25. ^ a b Kaskel, Stefan; Corbett, John D. (2000-07-01). "Synthesis, Structure, and Bonding of A 5 Cd 2 Tl 11 , A = Cs, Rb. Naked Pentagonal Antiprismatic Columns Centered by Cadmium". Inorganic Chemistry. 39 (14): 3086–3091. doi:10.1021/ic000061y. ISSN 0020-1669. PMID 11196905.
  26. ^ Flot, David; Tillard-Charbonnel, Monique; Belin, Claude (1998). "Na12K18In53Tl7: a novel mixed In/Tl phase hierarchically related to the C15 Friauf–Laves structure type. Synthesis, crystal and electronic structure". New Journal of Chemistry. 22 (6): 591–598. doi:10.1039/a708761f.
  27. ^ a b Li, Bin; Chi, Lisheng; Corbett, John D. (2003-05-01). "Na 6 TlSb 4 : Synthesis, Structure, and Bonding. An Electron-Rich Salt with a Chain Conformation and a Tl−Tl Bond Length Determined by the Cation". Inorganic Chemistry. 42 (9): 3036–3042. doi:10.1021/ic020728b. ISSN 0020-1669. PMID 12716198.
  28. ^ Chi, Lisheng; Corbett, John D. (2001-06-01). "K 6 Tl 2 Sb 3 , A Zintl Phase with a Novel Heteroatomic [Tl 4 Sb 6 12 - ] Chain 1". Inorganic Chemistry. 40 (12): 2705–2708. doi:10.1021/ic0014134. ISSN 0020-1669. PMID 11375683.
  29. ^ a b Saltykov, Vyacheslav; Nuss, Jürgen; Wedig, Ulrich; Jansen, Martin (March 2011). "Regular [Tl 6 ] 6– Cluster in Cs 4 Tl 2 O Exhibiting Closed-Shell Configuration and Energetic Stabilization due to Relativistic Spin–Orbit Coupling". Zeitschrift für anorganische und allgemeine Chemie. 637 (3–4): 357–361. doi:10.1002/zaac.201000405. ISSN 0044-2313.
  30. ^ Kaskel, Stefan; Klem, Michael T.; Corbett, John D. (2002-07-01). "Polyatomic Clusters of the Triel Elements. Palladium-Centered Clusters of Thallium in A 8 Tl 11 Pd, A = Cs, Rb, K". Inorganic Chemistry. 41 (13): 3457–3462. doi:10.1021/ic020078b. ISSN 0020-1669. PMID 12079464.
  31. ^ a b Dai, Jing-Cao; Corbett, John D. (2006-03-01). "Substitution of Au or Hg into BaTl 2 and BaIn 2 . New Ternary Examples of Smaller CeCu 2 -Type Intermetallic Phases". Inorganic Chemistry. 45 (5): 2104–2111. doi:10.1021/ic051891k. ISSN 0020-1669. PMID 16499373.
  32. ^ a b Dai, Jing-Cao; Gupta, Shalabh; Corbett, John D. (2011-01-03). "Synthesis, Structure, and Bonding of BaTl 4 . Size Effects on Encapsulation of Cations in Electron-Poor Metal Networks". Inorganic Chemistry. 50 (1): 238–244. doi:10.1021/ic1018828. ISSN 0020-1669. PMID 21138304.
  33. ^ a b Kraft, Rainer; Rayaprol, Sudhindra; Sebastian, C. Peter; Pöttgen, Rainer (2006-02-01). "Ferromagnetic Ordering in the Thallide EuPdTl 2". Zeitschrift für Naturforschung B. 61 (2): 159–163. doi:10.1515/znb-2006-0207. ISSN 1865-7117.
  34. ^ a b Huang, DaPing; Corbett, John D. (1998-08-01). "A 5 TaAs 4 Tl 2 (A = Rb, K). Transition-Metal Zintl Phases with a Novel Complex Ion: Synthesis, Structure, and Bonding". Inorganic Chemistry. 37 (16): 4006–4010. doi:10.1021/ic9802395. ISSN 0020-1669. PMID 11670516.
  35. ^ Liu, Shengfeng; Corbett, John D. (2004-08-01). "Synthesis, Structure, and Bonding of BaAuTl 3 and BaAuIn 3 : Stabilization of BaAl 4 -Type Examples of the Heavier Triels through Gold Substitution". Inorganic Chemistry. 43 (16): 4988–4993. doi:10.1021/ic040010r. ISSN 0020-1669. PMID 15285675.
  36. ^ Liu, Shengfeng; Corbett, John D. (2004-04-01). "Ba 2 AuTl 7 : An Intermetallic Compound with a Novel Condensed Structure". Inorganic Chemistry. 43 (8): 2471–2473. doi:10.1021/ic035399h. ISSN 0020-1669. PMID 15074963.
  NODES
eth 3