Vaccine resistance is the evolutionary adaptation of pathogens to infect and spread through vaccinated individuals, analogous to antimicrobial resistance. It concerns both human and animal vaccines. Although the emergence of a number of vaccine resistant pathogens has been well documented, this phenomenon is nevertheless much more rare and less of a concern than antimicrobial resistance.
Vaccine resistance may be considered a special case of immune evasion, from the immunity conferred by the vaccine. Since the immunity conferred by a vaccine may be different from that induced by infection by the pathogen, the immune evasion may also be easier (in case of an inefficient vaccine) or more difficult (would be the case of the universal flu vaccine). We speak of vaccine resistance only if the immune evasion is a result of evolutionary adaptation of the pathogen (and not a feature of the pathogen that it had before any evolutionary adaptation to the vaccine) and the adaptation is driven by the selective pressure induced by the vaccine (this would not be the case of an immune evasion that is the result of genetic drift that would be present even without vaccinating the population).[citation needed]
Some of the causes advanced for less frequent emergence of resistance are[1][2] that
- vaccines are mostly used for prophylaxis, that is before infection occurs, and usually act to suppress the pathogen before the host becomes infectious
- most vaccines _target multiple antigenic sites of the pathogen
- different hosts may produce different immune responses to the same pathogen
For diseases that confer long lasting immunity after exposure, typically childhood diseases, it was argued that a vaccine may provide the same immune response as natural infection, so it is expected that there should be no vaccine resistance.[3][4]
If vaccine resistance emerges the vaccine may retain some level of protection against serious infection, possibly by modifying the immune response of the host away from immunopathology.[5]
The best known cases of vaccine resistance are for the following diseases
- animal diseases
- Marek's disease where actually more virulent strains emerged after vaccination[6][7] because the vaccine did not protect against infection and transmission, only against serious forms of the disease
- Yersinia ruckeri[8][9] because a single mutation was sufficient to generate vaccine resistance
- avian metapneumovirus[10][11][12][13]
- human diseases
- Streptococcus pneumoniae[14][15] because recombination with another serotype not _targeted by the vaccine
- hepatitis B virus[16][17][18][19] because the vaccine _targeted a single site formed by 9 amino acids
- Bordetella pertussis[20][21][22][23] because not all serotypes were _targeted and later because acellular vaccines _targeted only a few antigens
Other less documented cases are for avian influenza,[24] avian reovirus,[25] Corynebacterium diphtheriae,[26] feline calicivirus,[27] H. influenzae,[28] infectious bursal disease virus,[29] Neisseria meningitidis,[30] Newcastle disease virus,[31] and porcine circovirus type 2.[32]
References
edit- ^ Kennedy, David A.; Read, Andrew F. (2017-03-29). "Why does drug resistance readily evolve but vaccine resistance does not?". Proceedings of the Royal Society B: Biological Sciences. 284 (1851): 20162562. doi:10.1098/rspb.2016.2562. ISSN 0962-8452. PMC 5378080. PMID 28356449.
- ^ Kennedy, David A.; Read, Andrew F. (2018-12-18). "Why the evolution of vaccine resistance is less of a concern than the evolution of drug resistance". Proceedings of the National Academy of Sciences. 115 (51): 12878–12886. Bibcode:2018PNAS..11512878K. doi:10.1073/pnas.1717159115. PMC 6304978. PMID 30559199.
- ^ McLean, Angela Ruth (1995-09-22). "Vaccination, evolution and changes in the efficacy of vaccines: a theoretical framework". Proceedings of the Royal Society of London. Series B: Biological Sciences. 261 (1362): 389–393. Bibcode:1995RSPSB.261..389M. doi:10.1098/rspb.1995.0164. PMID 8587880. S2CID 24978821.
- ^ Mclean, A. R (1998-01-01). "Vaccines and their impact on the control of disease". British Medical Bulletin. 54 (3): 545–556. doi:10.1093/oxfordjournals.bmb.a011709. ISSN 0007-1420. PMID 10326283.
- ^ Graham, Andrea L.; Allen, Judith E.; Read, Andrew F. (2005-11-10). "Evolutionary Causes and Consequences of Immunopathology". Annual Review of Ecology, Evolution, and Systematics. 36 (1): 373–397. doi:10.1146/annurev.ecolsys.36.102003.152622. ISSN 1543-592X.
- ^ Witter, R. L. (1997). "Increased Virulence of Marek's Disease Virus Field Isolates". Avian Diseases. 41 (1): 149–163. doi:10.2307/1592455. ISSN 0005-2086. JSTOR 1592455. PMID 9087332.
- ^ Read, Andrew F.; Baigent, Susan J.; Powers, Claire; Kgosana, Lydia B.; Blackwell, Luke; Smith, Lorraine P.; Kennedy, David A.; Walkden-Brown, Stephen W.; Nair, Venugopal K. (2015-07-27). "Imperfect Vaccination Can Enhance the Transmission of Highly Virulent Pathogens". PLOS Biology. 13 (7): e1002198. doi:10.1371/journal.pbio.1002198. ISSN 1545-7885. PMC 4516275. PMID 26214839.
- ^ Austin, D.A.; Robertson, P.A.W.; Austin, B. (2003-01-01). "Recovery of a New Biogroup of Yersinia ruckeri from Diseased Rainbow Trout (Oncorhynchus mykiss, Walbaum)". Systematic and Applied Microbiology. 26 (1): 127–131. doi:10.1078/072320203322337416. ISSN 0723-2020. PMID 12747420.
- ^ Welch, Timothy J.; Verner-Jeffreys, David W.; Dalsgaard, Inger; Wiklund, Thomas; Evenhuis, Jason P.; Garcia Cabrera, Jose A.; Hinshaw, Jeffrey M.; Drennan, John D.; Lapatra, Scott E. (2011). "Independent Emergence of Yersinia ruckeri Biotype 2 in the United States and Europe". Applied and Environmental Microbiology. 77 (10): 3493–3499. Bibcode:2011ApEnM..77.3493W. doi:10.1128/aem.02997-10. PMC 3126439. PMID 21441334.
- ^ Banet-Noach, Caroline; Simanov, Lubov; Laham-Karam, Nihay; Perk, Shimon; Bacharach, Eran (2009). "Longitudinal Survey of Avian Metapneumoviruses in Poultry in Israel: Infiltration of Field Strains into Vaccinated Flocks". Avian Diseases. 53 (2): 184–189. doi:10.1637/8466-090408-Reg.1. ISSN 0005-2086. JSTOR 25599093. PMID 19630222. S2CID 21433553.
- ^ Catelli, Elena; Lupini, Caterina; Cecchinato, Mattia; Ricchizzi, Enrico; Brown, Paul; Naylor, Clive J. (2010-01-22). "Field avian Metapneumovirus evolution avoiding vaccine induced immunity". Vaccine. 28 (4): 916–921. doi:10.1016/j.vaccine.2009.10.149. ISSN 0264-410X. PMID 19931381.
- ^ Cecchinato, Mattia; Catelli, Elena; Lupini, Caterina; Ricchizzi, Enrico; Clubbe, Jayne; Battilani, Mara; Naylor, Clive J. (2010-11-20). "Avian metapneumovirus (AMPV) attachment protein involvement in probable virus evolution concurrent with mass live vaccine introduction". Veterinary Microbiology. 146 (1–2): 24–34. doi:10.1016/j.vetmic.2010.04.014. ISSN 0378-1135. PMID 20447777.
- ^ Naylor, Clive J.; Ling, Roger; Edworthy, Nicole; Savage, Carol E.; Easton, Andrew J.YR 2007 (2007). "Avian metapneumovirus SH gene end and G protein mutations influence the level of protection of live-vaccine candidates". Journal of General Virology. 88 (6): 1767–1775. doi:10.1099/vir.0.82755-0. ISSN 1465-2099. PMID 17485538.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Weinberger, Daniel M; Malley, Richard; Lipsitch, Marc (December 2011). "Serotype replacement in disease after pneumococcal vaccination". The Lancet. 378 (9807): 1962–1973. doi:10.1016/s0140-6736(10)62225-8. ISSN 0140-6736. PMC 3256741. PMID 21492929.
- ^ Brueggemann, Angela B.; Pai, Rekha; Crook, Derrick W.; Beall, Bernard (2007-11-16). "Vaccine Escape Recombinants Emerge after Pneumococcal Vaccination in the United States". PLOS Pathogens. 3 (11): e168. doi:10.1371/journal.ppat.0030168. ISSN 1553-7374. PMC 2077903. PMID 18020702.
- ^ Carman, W.F.; Karayiannis, P.; Waters, J.; Thomas, H.C.; Zanetti, A.R.; Manzillo, G.; Zuckerman, A.J. (August 1990). "Vaccine-induced escape mutant of hepatitis B virus". The Lancet. 336 (8711): 325–329. doi:10.1016/0140-6736(90)91874-a. ISSN 0140-6736. PMID 1697396. S2CID 45479217.
- ^ Zanetti, A.R.; Tanzi, E.; Manzillo, G.; Maio, G.; Sbreglia, C.; Caporaso, N.; Thomas, Howard; Zuckerman, ArieJ. (November 1988). "Hepatitis B Variant in Europe". The Lancet. 332 (8620): 1132–1133. doi:10.1016/s0140-6736(88)90541-7. ISSN 0140-6736. PMID 2460710. S2CID 2638727.
- ^ Romanò, Luisa; Paladini, Sara; Galli, Cristina; Raimondo, Giovanni; Pollicino, Teresa; Zanetti, Alessandro R. (2015-01-01). "Hepatitis B vaccination". Human Vaccines & Immunotherapeutics. 11 (1): 53–57. doi:10.4161/hv.34306. ISSN 2164-5515. PMC 4514213. PMID 25483515.
- ^ Sheldon, J.; Soriano, V. (2008-02-04). "Hepatitis B virus escape mutants induced by antiviral therapy". Journal of Antimicrobial Chemotherapy. 61 (4): 766–768. doi:10.1093/jac/dkn014. ISSN 0305-7453. PMID 18218641.
- ^ Mooi, F. R.; van Oirschot, H.; Heuvelman, K.; van der Heide, H. G.; Gaastra, W.; Willems, R. J. (February 1998). "Polymorphism in the Bordetella pertussis virulence factors P.69/pertactin and pertussis toxin in The Netherlands: temporal trends and evidence for vaccine-driven evolution". Infection and Immunity. 66 (2): 670–675. doi:10.1128/IAI.66.2.670-675.1998. ISSN 0019-9567. PMC 107955. PMID 9453625.
- ^ Kallonen, Teemu; He, Qiushui (2009-07-01). "Bordetella pertussis strain variation and evolution postvaccination". Expert Review of Vaccines. 8 (7): 863–875. doi:10.1586/erv.09.46. ISSN 1476-0584. PMID 19538113. S2CID 22946846.
- ^ Hegerle, Nicolas; Guiso, Nicole (2014-09-01). "Bordetella pertussis and pertactin-deficient clinical isolates: lessons for pertussis vaccines". Expert Review of Vaccines. 13 (9): 1135–1146. doi:10.1586/14760584.2014.932254. ISSN 1476-0584. PMID 24953157. S2CID 21534501.
- ^ Safarchi, Azadeh; Octavia, Sophie; Luu, Laurence Don Wai; Tay, Chin Yen; Sintchenko, Vitali; Wood, Nicholas; Marshall, Helen; McIntyre, Peter; Lan, Ruiting (2015-11-17). "Pertactin negative Bordetella pertussis demonstrates higher fitness under vaccine selection pressure in a mixed infection model". Vaccine. 33 (46): 6277–6281. doi:10.1016/j.vaccine.2015.09.064. ISSN 0264-410X. PMID 26432908.
- ^ Lee, Chang-Won; Senne, Dennis A.; Suarez, David L. (2004). "Effect of Vaccine Use in the Evolution of Mexican Lineage H5N2 Avian Influenza Virus". Journal of Virology. 78 (15): 8372–8381. doi:10.1128/jvi.78.15.8372-8381.2004. PMC 446090. PMID 15254209.
- ^ Lu, Huaguang; Tang, Yi; Dunn, Patricia A.; Wallner-Pendleton, Eva A.; Lin, Lin; Knoll, Eric A. (2015-10-15). "Isolation and molecular characterization of newly emerging avian reovirus variants and novel strains in Pennsylvania, USA, 2011–2014". Scientific Reports. 5 (1): 14727. Bibcode:2015NatSR...514727L. doi:10.1038/srep14727. ISSN 2045-2322. PMC 4606735. PMID 26469681.
- ^ Soubeyrand, Benoit; Plotkin, Stanley A. (June 2002). "Antitoxin vaccines and pathogen virulence". Nature. 417 (6889): 609–610. doi:10.1038/417609b. ISSN 1476-4687. PMID 12050654. S2CID 4408258.
- ^ Radford, Alan D.; Dawson, Susan; Coyne, Karen P.; Porter, Carol J.; Gaskell, Rosalind M. (2006-10-05). "The challenge for the next generation of feline calicivirus vaccines". Veterinary Microbiology. 117 (1): 14–18. doi:10.1016/j.vetmic.2006.04.004. ISSN 0378-1135. PMID 16698199.
- ^ Ribeiro, Guilherme S.; Reis, Joice N.; Cordeiro, Soraia M.; Lima, Josilene B. T.; Gouveia, Edilane L.; Petersen, Maya; Salgado, Kátia; Silva, Hagamenon R.; Zanella, Rosemeire Cobo; Almeida, Samanta C. Grassi; Brandileone, Maria Cristina (January 2003). "Prevention ofHaemophilus influenzaeType b (Hib) Meningitis and Emergence of Serotype Replacement with Type a Strains after Introduction of Hib Immunization in Brazil". The Journal of Infectious Diseases. 187 (1): 109–116. doi:10.1086/345863. ISSN 0022-1899. PMID 12508153.
- ^ Berg, Thierry P. Van Den (2000-06-01). "Acute infectious bursal disease in poultry: A review". Avian Pathology. 29 (3): 175–194. doi:10.1080/03079450050045431. ISSN 0307-9457. PMID 19184804. S2CID 23178744.
- ^ Kertesz, Daniel A.; Coulthart, Michael B.; Ryan, J. Alan; Johnson, Wendy M.; Ashton, Fraser E. (June 1998). "Serogroup B, Electrophoretic Type 15 Neisseria meningitidis in Canada". The Journal of Infectious Diseases. 177 (6): 1754–1757. doi:10.1086/517439. ISSN 0022-1899. PMID 9607865.
- ^ Boven, Michiel van; Bouma, Annemarie; Fabri, Teun H. F.; Katsma, Elly; Hartog, Leo; Koch, Guus (2008-02-01). "Herd immunity to Newcastle disease virus in poultry by vaccination". Avian Pathology. 37 (1): 1–5. doi:10.1080/03079450701772391. ISSN 0307-9457. PMC 2556191. PMID 18202943.
- ^ Franzo, Giovanni; Tucciarone, Claudia Maria; Cecchinato, Mattia; Drigo, Michele (2016-12-19). "Porcine circovirus type 2 (PCV2) evolution before and after the vaccination introduction: A large scale epidemiological study". Scientific Reports. 6 (1): 39458. Bibcode:2016NatSR...639458F. doi:10.1038/srep39458. ISSN 2045-2322. PMC 5171922. PMID 27991573.