English

edit
 
English Wikipedia has an article on:
Wikipedia

Noun

edit

commutative ring (plural commutative rings)

  1. (algebra, ring theory) A ring whose multiplicative operation is commutative.
    • 1960, Oscar Zariski, Pierre Samuel, Commutative Algebra II, Springer, page 129:
      Among commutative rings, the polynomial rings in a finite number of indeterminates enjoy important special properties and are frequently used in applications.
    • 2002, Joseph J. Rotman, Advanced Modern Algebra, 2nd edition, American Mathematical Society, page 295:
      As usual, it is simpler to begin by looking at a more general setting—in this case, commutative rings—before getting involved with polynomial rings. It turns out that the nature of the ideals in a commutative ring is important: for example, we have already seen that gcd's exist in PIDs, while this may not be true in other commutative rings.
    • 2004, K. R. Goodearl, R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, page 47:
      In trying to understand the ideal theory of a commutative ring, one quickly sees that it is important to first understand the prime ideals. We recall that a proper ideal   in a commutative ring   is prime if, whenever we have two elements   and   of   such that  , it follows that   or  ; equivalently,   is a prime ideal if and only if the factor ring   is a domain.

Hyponyms

edit

Translations

edit

Further reading

edit
  NODES
Idea 7
idea 7
Note 1