71 (seventy-one) is the natural number following 70 and preceding 72.

← 70 71 72 →
Cardinalseventy-one
Ordinal71st
(seventy-first)
Factorizationprime
Prime20th
Divisors1, 71
Greek numeralΟΑ´
Roman numeralLXXI
Binary10001112
Ternary21223
Senary1556
Octal1078
Duodecimal5B12
Hexadecimal4716

In mathematics

edit

71 is the 20th prime number. Because both rearrangements of its digits (17 and 71) are prime numbers, 71 is an emirp and more generally a permutable prime.[1][2]

71 is a centered heptagonal number.[3]

It is a Pillai prime, since   is divisible by 71, but 71 is not one more than a multiple of 9.[4] It is part of the last known pair (71, 7) of Brown numbers, since  .[5]

71 is the smallest of thirty-one discriminants of imaginary quadratic fields with class number of 7, negated (see also, Heegner numbers).[6]

71 is the largest number which occurs as a prime factor of an order of a sporadic simple group, the largest (15th) supersingular prime.[7][8]

In Science

edit
Lutetium is the 71st element on the periodic table

See also

edit

References

edit
  1. ^ Sloane, N. J. A. (ed.). "Sequence A006567 (Emirps (primes whose reversal is a different prime))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  2. ^ Baker, Alan (January 2017). "Mathematical spandrels". Australasian Journal of Philosophy. 95 (4): 779–793. doi:10.1080/00048402.2016.1262881. S2CID 218623812.
  3. ^ Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  4. ^ Sloane, N. J. A. (ed.). "Sequence A063980 (Pillai primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  5. ^ Berndt, Bruce C.; Galway, William F. (2000). "On the Brocard–Ramanujan Diophantine equation  ". Ramanujan Journal. 4 (1): 41–42. doi:10.1023/A:1009873805276. MR 1754629. S2CID 119711158.
  6. ^ Sloane, N. J. A. (ed.). "Sequence A046004 (Discriminants of imaginary quadratic fields with class number 7 (negated).)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2024-08-03.
  7. ^ Sloane, N. J. A. (ed.). "Sequence A002267 (The 15 supersingular primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Duncan, John F. R.; Ono, Ken (2016). "The Jack Daniels problem". Journal of Number Theory. 161: 230–239. doi:10.1016/j.jnt.2015.06.001. MR 3435726. S2CID 117748466.
  NODES
Note 1