NGC 6051 is a giant elliptical galaxy located in the constellation of Serpens. The galaxy lies 453 million light-years from Earth, which means given its apparent dimensions, the galaxy is around 250,000 light-years across.[1] It is the brightest cluster galaxy inside a relaxed poor cluster called AWM 4, a fossil system,[2] making up of at least 30 galaxy members.[3]

NGC 6051
SDSS image of NGC 6051.
Observation data (J2000 epoch)
ConstellationSerpens
Right ascension16h 04m 56.6s
Declination+23° 55′ 57.7″
Redshift0.031404
Heliocentric radial velocity9,415 Km/s
Distance453 Mly (138.8 Mpc)
Group or clusterAWM 4
Apparent magnitude (V)0.19
Apparent magnitude (B)0.26
Surface brightness13.71
Characteristics
TypecD; E
Size250,000 ly (approximately 76.65 kpc)
Apparent size (V)1.3' x 0.9'
Other designations
PGC 57006, UGC 10178, 4C +24.36, MCG +04-38-021, GIN 487

Observational history

edit

NGC 6051 was discovered by Edouard Stephan on June 20, 1881. According to John Louis Emil Dreyer, he described it as faint small round object with a bright middle nucleus and a 10th magnitude star to southeast.[4] SIMBAD and HyperLEDA databases listed NGC 6051 as IC 4588,[5][6] but according to Harold Corwin, these galaxies are two separate objects.[7] O'Sullivan and associates (2011) have them as separate entities, with NGC 6051 being the central dominant galaxy of a cluster.[8]

Characteristics

edit

NGC 6051 is a Type cD galaxy.[9] It is much more luminous compared to other galaxies in AWM 4,[10] with a low surface brightness profile,[3] but does not have a stellar envelope.[11]

The nucleus in NGC 6051 is considered active and it is a radio galaxy.[12] It is classified as a Fanaroff-Riley class hybrid transition of Type I and Type II. Hosting a wide-angle tailed powerful radio source,[13][14] NGC 6051 contains two reflection-symmetrical wiggled radio jets and large radio lobes emerging from its radio core by ~ 80 kiloparsecs (kpc).[15] The most accepted theory for this active galactic nuclei (AGN) activity, is the presence of a supermassive black hole. The mass of the black hole in NGC 6051 is estimated to be 9.57 ± 0.02 M based on the MBH - MK correlation.[16]

According to the jet to counterjet brightness ratio, the central ~ 10 kpc jet region of NGC 6051 is potentially orientated closer to the plane of the sky. From the analysis of gradually steepening spectral index, the jets and lobes have an estimated lifetime of 160 million years old. This indicates the source of NGC 6051 is old.[15][13]

A study has found traces of iron inside the entrained gas produced from the central region of NGC 6051, with a mass of ~1.4 x 106 M. With the energy amount of ~4.5 x 1057 erg, the gas might been transported out from the galaxy by its jets, to a certain extent of enriching the intracluster medium.[14]

See also

edit
edit

References

edit
  1. ^ "NED Search Results for NGC 6051". ned.ipac.caltech.edu. Retrieved 2024-09-07.
  2. ^ Zibetti, Stefano; Pierini, Daniele; Pratt, Gabriel W. (2009-01-11). "Are fossil groups a challenge of the cold dark matter paradigm?". Monthly Notices of the Royal Astronomical Society. 392 (2): 525–536. arXiv:0809.2036. Bibcode:2009MNRAS.392..525Z. doi:10.1111/j.1365-2966.2008.14098.x. ISSN 0035-8711.
  3. ^ a b O'Sullivan, E.; Vrtilek, J. M.; Kempner, J. C.; David, L. P.; Houck, J. C. (2005-03-11). "AWM 4 - an isothermal cluster observed with XMM-Newton". Monthly Notices of the Royal Astronomical Society. 357 (4): 1134–1150. arXiv:astro-ph/0412430. Bibcode:2005MNRAS.357.1134O. doi:10.1111/j.1365-2966.2005.08749.x. ISSN 0035-8711.
  4. ^ "New General Catalog Objects: NGC 6050 - 6099". cseligman.com. Retrieved 2024-09-07.
  5. ^ "NGC 6051". simbad.u-strasbg.fr. Retrieved 2024-09-07.
  6. ^ "Hyperleda results for NGC 6051". archive.wikiwix.com. Retrieved 2024-09-07.
  7. ^ "Corwin's description on IC 4588". www.darkerview.com. Retrieved 2024-09-07.
  8. ^ O'Sullivan, Ewan; et al. (March 2011). "A deep Chandra observation of the poor cluster AWM 4 - II. The role of the radio jets in enriching the intracluster medium". Monthly Notices of the Royal Astronomical Society. 411 (3): 1833–1842. arXiv:1010.0610. Bibcode:2011MNRAS.411.1833O. doi:10.1111/j.1365-2966.2010.17812.x.
  9. ^ Rebusco, P.; Churazov, E.; Bohringer, H.; Forman, W. (2006-11-11). "Effect of turbulent diffusion on iron abundance profiles". Monthly Notices of the Royal Astronomical Society. 372 (4): 1840–1850. arXiv:astro-ph/0608491. Bibcode:2006MNRAS.372.1840R. doi:10.1111/j.1365-2966.2006.10977.x. ISSN 0035-8711.
  10. ^ Gastaldello, Fabio; Buote, David A.; Brighenti, Fabrizio; Mathews, William G.; Temi, Pasquale; Ettori, Stefano; Heinz, Sebastian; Wilcots, Eric (2009). "AGN Feedback in Galaxy Groups: The Two Interesting Cases of AWM 4 and NGC 5044". AIP Conference Proceedings. 1201. AIP: 237–240. arXiv:0909.0600. Bibcode:2009AIPC.1201..237G. doi:10.1063/1.3293045.
  11. ^ Schombert, James M. (August 1987). "The structure of brightest cluster members. II - Mergers". The Astrophysical Journal Supplement Series. 64: 643. Bibcode:1987ApJS...64..643S. doi:10.1086/191212. ISSN 0067-0049.
  12. ^ Velzen, Sjoert van; Falcke, Heino; Schellart, Pim; Nierstenhöfer, Nils; Kampert, Karl-Heinz (2012-08-01). "Radio galaxies of the local universe - All-sky catalog, luminosity functions, and clustering". Astronomy & Astrophysics. 544: A18. arXiv:1206.0031. Bibcode:2012A&A...544A..18V. doi:10.1051/0004-6361/201219389. ISSN 0004-6361.
  13. ^ a b Giacintucci, Simona; Vrtilek, Jan M.; Murgia, Matteo; Raychaudhury, Somak; O'Sullivan, Ewan J.; Venturi, Tiziana; David, Laurence P.; Mazzotta, Pasquale; Clarke, Tracy E.; Athreya, Ramana M. (2008-07-01). "A Giant Metrewave Radio Telescope Multifrequency Radio Study of the Isothermal Core of the Poor Galaxy Cluster AWM 4". The Astrophysical Journal. 682 (1): 186–198. arXiv:0804.1906. Bibcode:2008ApJ...682..186G. doi:10.1086/589280. ISSN 0004-637X.
  14. ^ a b O’Sullivan, Ewan; Giacintucci, Simona; David, Laurence P.; Vrtilek, Jan M.; Raychaudhury, Somak (2010-11-17). "A deep Chandra observation of the poor cluster AWM 4 - II. The role of the radio jets in enriching the intracluster medium". Monthly Notices of the Royal Astronomical Society. 411 (3): 1833–1842. arXiv:1010.0610. Bibcode:2011MNRAS.411.1833O. doi:10.1111/j.1365-2966.2010.17812.x. ISSN 0035-8711.
  15. ^ a b Giacintucci, Simona; O’Sullivan, Ewan; Vrtilek, Jan; David, Laurence P.; Raychaudhury, Somak; Venturi, Tiziana; Athreya, Ramana M.; Clarke, Tracy E.; Murgia, Matteo; Mazzotta, Pasquale; Gitti, Myriam; Ponman, Trevor; Ishwara-Chandra, C. H.; Jones, Christine; Forman, William R. (2011-04-21). "A COMBINED LOW-RADIO FREQUENCY/X-RAY STUDY OF GALAXY GROUPS. I. GIANT METREWAVE RADIO TELESCOPE OBSERVATIONS AT 235 MHz AND 610 MHz". The Astrophysical Journal. 732 (2): 95. arXiv:1103.1364. Bibcode:2011ApJ...732...95G. doi:10.1088/0004-637x/732/2/95. ISSN 0004-637X.
  16. ^ Mezcua, M.; Hlavacek-Larrondo, J.; Lucey, J. R.; Hogan, M. T.; Edge, A. C.; McNamara, B. R. (2017-10-30). "The most massive black holes on the Fundamental Plane of black hole accretion". Monthly Notices of the Royal Astronomical Society. 474 (1): 1342–1360. arXiv:1710.10268. doi:10.1093/mnras/stx2812. ISSN 0035-8711.
  NODES
Note 1